J. Liao, Y. T. Lai, B. Kuo, P. Gopaladasu, Scott Wang, S. Yao, Kiki Wang, I. Wang, Paul Lin, Barrett Finch, S. Deshmukh
{"title":"采用超薄TiN硬掩膜的自对准蚀刻工艺,提高90 nm间距关键互连的良率和可靠性","authors":"J. Liao, Y. T. Lai, B. Kuo, P. Gopaladasu, Scott Wang, S. Yao, Kiki Wang, I. Wang, Paul Lin, Barrett Finch, S. Deshmukh","doi":"10.1109/IITC.2014.6831860","DOIUrl":null,"url":null,"abstract":"Back-end-of line (BEOL) interconnect scaling has led to the implementation of self-aligned via (SAV) schemes for ≤ 90 nm BEOL pitches [1]. In one implementation of this scheme, a TiN metal hardmask (MHM) is used for the trench pattern definition while the interconnect vias are patterned using a tri-layer resist mask such that the vias are self-aligned to the underlayer trench lines [2]. In this work, we describe a SAV etch process that enables the use of thin (≤ 15 nm) TiN MHM. Key attributes of the via and trench etching process in a capacitively coupled etch reactor are described to meet physical performance requirements and eliminate tradeoffs between via chain yield and via-to-metal (M2-V1) bridging. Low-k sidewall damage, post-etch wet clean, and metallization are discussed. Finally, the physical etch performance is correlated to the device breakdown voltage (VBD) and time-dependent dielectric breakdown (TDDB) lifetime performance.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"33 1","pages":"127-130"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A self-aligned via etch process to increase yield and reliability of 90 nm pitch critical interconnects with ultra-thin TiN hardmask\",\"authors\":\"J. Liao, Y. T. Lai, B. Kuo, P. Gopaladasu, Scott Wang, S. Yao, Kiki Wang, I. Wang, Paul Lin, Barrett Finch, S. Deshmukh\",\"doi\":\"10.1109/IITC.2014.6831860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Back-end-of line (BEOL) interconnect scaling has led to the implementation of self-aligned via (SAV) schemes for ≤ 90 nm BEOL pitches [1]. In one implementation of this scheme, a TiN metal hardmask (MHM) is used for the trench pattern definition while the interconnect vias are patterned using a tri-layer resist mask such that the vias are self-aligned to the underlayer trench lines [2]. In this work, we describe a SAV etch process that enables the use of thin (≤ 15 nm) TiN MHM. Key attributes of the via and trench etching process in a capacitively coupled etch reactor are described to meet physical performance requirements and eliminate tradeoffs between via chain yield and via-to-metal (M2-V1) bridging. Low-k sidewall damage, post-etch wet clean, and metallization are discussed. Finally, the physical etch performance is correlated to the device breakdown voltage (VBD) and time-dependent dielectric breakdown (TDDB) lifetime performance.\",\"PeriodicalId\":6823,\"journal\":{\"name\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"volume\":\"33 1\",\"pages\":\"127-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2014.6831860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2014.6831860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
线后端(BEOL)互连缩放导致了≤90 nm BEOL间距的自对准通孔(SAV)方案的实现[1]。在该方案的一种实现中,TiN金属硬掩模(MHM)用于沟槽图案定义,而互连过孔使用三层抗蚀剂掩模进行图图化,使过孔与底层沟槽线自对齐[2]。在这项工作中,我们描述了一种SAV蚀刻工艺,可以使用薄(≤15 nm) TiN MHM。描述了电容耦合蚀刻反应器中通孔和沟槽蚀刻工艺的关键属性,以满足物理性能要求,并消除通孔链产率和通孔到金属(M2-V1)桥接之间的权衡。讨论了低k的侧壁损伤、蚀刻后湿清洗和金属化。最后,物理蚀刻性能与器件击穿电压(VBD)和时变介质击穿(TDDB)寿命性能相关。
A self-aligned via etch process to increase yield and reliability of 90 nm pitch critical interconnects with ultra-thin TiN hardmask
Back-end-of line (BEOL) interconnect scaling has led to the implementation of self-aligned via (SAV) schemes for ≤ 90 nm BEOL pitches [1]. In one implementation of this scheme, a TiN metal hardmask (MHM) is used for the trench pattern definition while the interconnect vias are patterned using a tri-layer resist mask such that the vias are self-aligned to the underlayer trench lines [2]. In this work, we describe a SAV etch process that enables the use of thin (≤ 15 nm) TiN MHM. Key attributes of the via and trench etching process in a capacitively coupled etch reactor are described to meet physical performance requirements and eliminate tradeoffs between via chain yield and via-to-metal (M2-V1) bridging. Low-k sidewall damage, post-etch wet clean, and metallization are discussed. Finally, the physical etch performance is correlated to the device breakdown voltage (VBD) and time-dependent dielectric breakdown (TDDB) lifetime performance.