单色b-充足链路的Khovanov同调有一条尾巴

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2012-03-26 DOI:10.4171/QT/58
L. Rozansky
{"title":"单色b-充足链路的Khovanov同调有一条尾巴","authors":"L. Rozansky","doi":"10.4171/QT/58","DOIUrl":null,"url":null,"abstract":"C. Armond, S. Garoufalidis and T.Le have shown that a unicolored Jones polynomial of a B-adequate link has a stable tail at large colors. We categorify this tail by showing that Khovanov homology of a unicolored link also has a stable tail, whose graded Euler characteristic coincides with the tail of the Jones polynomial.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"57 1","pages":"541-579"},"PeriodicalIF":1.0000,"publicationDate":"2012-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Khovanov homology of a unicolored b-adequate link has a tail\",\"authors\":\"L. Rozansky\",\"doi\":\"10.4171/QT/58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C. Armond, S. Garoufalidis and T.Le have shown that a unicolored Jones polynomial of a B-adequate link has a stable tail at large colors. We categorify this tail by showing that Khovanov homology of a unicolored link also has a stable tail, whose graded Euler characteristic coincides with the tail of the Jones polynomial.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"57 1\",\"pages\":\"541-579\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/58\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/58","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

C. Armond, S. Garoufalidis和T.Le已经证明了b -充足链路的单色Jones多项式在大颜色时具有稳定的尾。我们通过证明单色链路的Khovanov同调也有一个稳定的尾巴来对这个尾巴进行分类,这个稳定的尾巴的梯度欧拉特征与琼斯多项式的尾巴一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Khovanov homology of a unicolored b-adequate link has a tail
C. Armond, S. Garoufalidis and T.Le have shown that a unicolored Jones polynomial of a B-adequate link has a stable tail at large colors. We categorify this tail by showing that Khovanov homology of a unicolored link also has a stable tail, whose graded Euler characteristic coincides with the tail of the Jones polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信