斑马鱼视网膜细胞发育晚期需要ras相关核蛋白。

Cheng-Yung Lin, Hsing-Yen Huang, Po-nien Lu, Chien-Wei Lin, Kuan-Ming Lu, H. Tsai
{"title":"斑马鱼视网膜细胞发育晚期需要ras相关核蛋白。","authors":"Cheng-Yung Lin, Hsing-Yen Huang, Po-nien Lu, Chien-Wei Lin, Kuan-Ming Lu, H. Tsai","doi":"10.1387/ijdb.150310ht","DOIUrl":null,"url":null,"abstract":"Ras-related nuclear protein (Ran) is involved in cell division by regulating nucleocytoplasmic transport and modulating the assembly of tubulin. However, its function in embryonic development is unclear. We used zebrafish to study the roles of Ran in eye development. The ran transcripts were restrictedly expressed in head and eyes after the pharyngula stage. The microphthalmos, in which no ordered layers with differentiated retinal cells were detected, was observed in the ran-deficient embryos. They exhibited faster decline cyclinD1-expressed cells, suggesting that cell cycle regulation in retinae was defective. The apoptotic signals in the retinae of ran-deficient embryos remained low at early (24 hpf) stage. Early eye field specification markers, rx1 and pax6, were only slightly affected, and markers for establishing axon migration, fgf8 and pax2, were normally expressed, suggesting Ran is not required in the early stages of eye development. However, the early optic nerve differentiation marker p57kip2 was not expressed at middle (48 hpf) and late (72 hpf) stages. We also observed a decrease in the retinal neuron proteins HuC and Neurolin. The proneural gene ath5, which first determines the cell fate of the developing ganglion cell layer, was undetectable. Furthermore, we found that Ran was associated with ADP-ribosylation factor-like protein 6-interacting protein 1 (Arl6ip1), which plays a role in retinal development, suggesting that Ran associates with Arl6ip1 to regulate retinal development. Therefore, while the effects of Ran are minimal during early specification of the eye field, Ran is required for proliferation and differentiation of retinal cells at later developmental stages.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ras-Related Nuclear Protein is required for late developmental stages of retinal cells in zebrafish eyes.\",\"authors\":\"Cheng-Yung Lin, Hsing-Yen Huang, Po-nien Lu, Chien-Wei Lin, Kuan-Ming Lu, H. Tsai\",\"doi\":\"10.1387/ijdb.150310ht\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ras-related nuclear protein (Ran) is involved in cell division by regulating nucleocytoplasmic transport and modulating the assembly of tubulin. However, its function in embryonic development is unclear. We used zebrafish to study the roles of Ran in eye development. The ran transcripts were restrictedly expressed in head and eyes after the pharyngula stage. The microphthalmos, in which no ordered layers with differentiated retinal cells were detected, was observed in the ran-deficient embryos. They exhibited faster decline cyclinD1-expressed cells, suggesting that cell cycle regulation in retinae was defective. The apoptotic signals in the retinae of ran-deficient embryos remained low at early (24 hpf) stage. Early eye field specification markers, rx1 and pax6, were only slightly affected, and markers for establishing axon migration, fgf8 and pax2, were normally expressed, suggesting Ran is not required in the early stages of eye development. However, the early optic nerve differentiation marker p57kip2 was not expressed at middle (48 hpf) and late (72 hpf) stages. We also observed a decrease in the retinal neuron proteins HuC and Neurolin. The proneural gene ath5, which first determines the cell fate of the developing ganglion cell layer, was undetectable. Furthermore, we found that Ran was associated with ADP-ribosylation factor-like protein 6-interacting protein 1 (Arl6ip1), which plays a role in retinal development, suggesting that Ran associates with Arl6ip1 to regulate retinal development. Therefore, while the effects of Ran are minimal during early specification of the eye field, Ran is required for proliferation and differentiation of retinal cells at later developmental stages.\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.150310ht\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.150310ht","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

ras相关核蛋白(Ran)通过调节核细胞质运输和调节微管蛋白的组装参与细胞分裂。然而,其在胚胎发育中的功能尚不清楚。我们用斑马鱼来研究Ran在眼睛发育中的作用。这些转录本在咽期后仅在头部和眼睛中表达。在rand缺失的胚胎中,观察到小眼中没有有序层分化的视网膜细胞。他们表现出更快的cyclind1表达的细胞下降,表明视网膜的细胞周期调节有缺陷。在早期(24 hpf)阶段,视网膜的凋亡信号仍然很低。早期视野规范标记rx1和pax6仅受到轻微影响,而建立轴突迁移的标记fgf8和pax2则正常表达,这表明Ran在眼睛发育的早期阶段并不需要。然而,早期视神经分化标志物p57kip2在中期(48 hpf)和晚期(72 hpf)未表达。我们还观察到视网膜神经元蛋白HuC和Neurolin的减少。未检测到首先决定发育中的神经节细胞层细胞命运的原基因ath5。此外,我们发现Ran与adp -核糖基化因子样蛋白6-相互作用蛋白1 (Arl6ip1)相关,而Arl6ip1在视网膜发育中起作用,这表明Ran与Arl6ip1相关以调节视网膜发育。因此,尽管Ran在早期视野形成过程中的作用很小,但在后期发育阶段视网膜细胞的增殖和分化需要Ran。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ras-Related Nuclear Protein is required for late developmental stages of retinal cells in zebrafish eyes.
Ras-related nuclear protein (Ran) is involved in cell division by regulating nucleocytoplasmic transport and modulating the assembly of tubulin. However, its function in embryonic development is unclear. We used zebrafish to study the roles of Ran in eye development. The ran transcripts were restrictedly expressed in head and eyes after the pharyngula stage. The microphthalmos, in which no ordered layers with differentiated retinal cells were detected, was observed in the ran-deficient embryos. They exhibited faster decline cyclinD1-expressed cells, suggesting that cell cycle regulation in retinae was defective. The apoptotic signals in the retinae of ran-deficient embryos remained low at early (24 hpf) stage. Early eye field specification markers, rx1 and pax6, were only slightly affected, and markers for establishing axon migration, fgf8 and pax2, were normally expressed, suggesting Ran is not required in the early stages of eye development. However, the early optic nerve differentiation marker p57kip2 was not expressed at middle (48 hpf) and late (72 hpf) stages. We also observed a decrease in the retinal neuron proteins HuC and Neurolin. The proneural gene ath5, which first determines the cell fate of the developing ganglion cell layer, was undetectable. Furthermore, we found that Ran was associated with ADP-ribosylation factor-like protein 6-interacting protein 1 (Arl6ip1), which plays a role in retinal development, suggesting that Ran associates with Arl6ip1 to regulate retinal development. Therefore, while the effects of Ran are minimal during early specification of the eye field, Ran is required for proliferation and differentiation of retinal cells at later developmental stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信