{"title":"淀粉糊法制备麦麸生物质多孔气凝胶制备高潜热储温相变复合材料","authors":"Xiugui Zhang, Mingyang Dong, Junqing Shi, Qingqing Wang, Qufu Wei and Yibing Cai*, ","doi":"10.1021/acs.energyfuels.3c00447","DOIUrl":null,"url":null,"abstract":"<p >In order to improve the applicability in some extreme environments, a large number of research efforts have been conducted using carrier materials loaded with phase-change materials (PCMs). Wheat bran (WB), a kind of agroforestry waste and inexpensive biomass, is often ignored and discarded and further becomes a serious environmental threat. In this work, an effective high-value utility of WB in the field of composite PCMs was designed. First, briefness and efficient alkali-treated methods were adopted to control the degree of starch gelatinization of WB and the components within WB were entangled to form a three-dimensional network, and then the alkali–wheat bran aerogels (AWBs) were obtained via freeze-drying method. The AWBs were utilized as biomass carriers to incorporate polyethylene glycol (PEG), and the composite PCMs (AWBs-PEG) were fabricated. The morphological structure and the properties of antileakage, thermal storage, thermal stability, and temperature regulation of the fabricated composite PCMs were studied. The results indicated that AWBs exhibited excellent performances including good antileakage and high PEG adsorption rate (up to 86.2%). The melting and crystallization enthalpy values of AWBs-PEG could reach 153.5 J/g and 134.3 J/g, respectively. It could also be found that AWBs-PEG possessed a superior thermal cycle stability, thermal reliability, and temperature regulation ability. The integration of AWBs-PEG with temperature sensitive ink demonstrated an exciting color-change buffering property. It would provide an innovative direction for solar thermal energy storage, thermal infrared stealth, advanced smart textiles, and other research fields.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"37 8","pages":"6110–6121"},"PeriodicalIF":5.3000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Construction of Wheat Bran Biomass Porous Aerogel by Starch Pasting for Fabrication of Phase Change Composites with High Latent Heat Storage and Temperature Regulation\",\"authors\":\"Xiugui Zhang, Mingyang Dong, Junqing Shi, Qingqing Wang, Qufu Wei and Yibing Cai*, \",\"doi\":\"10.1021/acs.energyfuels.3c00447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In order to improve the applicability in some extreme environments, a large number of research efforts have been conducted using carrier materials loaded with phase-change materials (PCMs). Wheat bran (WB), a kind of agroforestry waste and inexpensive biomass, is often ignored and discarded and further becomes a serious environmental threat. In this work, an effective high-value utility of WB in the field of composite PCMs was designed. First, briefness and efficient alkali-treated methods were adopted to control the degree of starch gelatinization of WB and the components within WB were entangled to form a three-dimensional network, and then the alkali–wheat bran aerogels (AWBs) were obtained via freeze-drying method. The AWBs were utilized as biomass carriers to incorporate polyethylene glycol (PEG), and the composite PCMs (AWBs-PEG) were fabricated. The morphological structure and the properties of antileakage, thermal storage, thermal stability, and temperature regulation of the fabricated composite PCMs were studied. The results indicated that AWBs exhibited excellent performances including good antileakage and high PEG adsorption rate (up to 86.2%). The melting and crystallization enthalpy values of AWBs-PEG could reach 153.5 J/g and 134.3 J/g, respectively. It could also be found that AWBs-PEG possessed a superior thermal cycle stability, thermal reliability, and temperature regulation ability. The integration of AWBs-PEG with temperature sensitive ink demonstrated an exciting color-change buffering property. It would provide an innovative direction for solar thermal energy storage, thermal infrared stealth, advanced smart textiles, and other research fields.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"37 8\",\"pages\":\"6110–6121\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c00447\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c00447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Construction of Wheat Bran Biomass Porous Aerogel by Starch Pasting for Fabrication of Phase Change Composites with High Latent Heat Storage and Temperature Regulation
In order to improve the applicability in some extreme environments, a large number of research efforts have been conducted using carrier materials loaded with phase-change materials (PCMs). Wheat bran (WB), a kind of agroforestry waste and inexpensive biomass, is often ignored and discarded and further becomes a serious environmental threat. In this work, an effective high-value utility of WB in the field of composite PCMs was designed. First, briefness and efficient alkali-treated methods were adopted to control the degree of starch gelatinization of WB and the components within WB were entangled to form a three-dimensional network, and then the alkali–wheat bran aerogels (AWBs) were obtained via freeze-drying method. The AWBs were utilized as biomass carriers to incorporate polyethylene glycol (PEG), and the composite PCMs (AWBs-PEG) were fabricated. The morphological structure and the properties of antileakage, thermal storage, thermal stability, and temperature regulation of the fabricated composite PCMs were studied. The results indicated that AWBs exhibited excellent performances including good antileakage and high PEG adsorption rate (up to 86.2%). The melting and crystallization enthalpy values of AWBs-PEG could reach 153.5 J/g and 134.3 J/g, respectively. It could also be found that AWBs-PEG possessed a superior thermal cycle stability, thermal reliability, and temperature regulation ability. The integration of AWBs-PEG with temperature sensitive ink demonstrated an exciting color-change buffering property. It would provide an innovative direction for solar thermal energy storage, thermal infrared stealth, advanced smart textiles, and other research fields.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.