C. Fan, Chun‐Hu Cheng, C. Tu, Chien Liu, Wan-Hsin Chen, Tun-Jen Chang, Chun-Yen Chang
{"title":"利用无掺杂的氧化铪和栅极应变实现具有均匀sub - 35mv /dec开关的高可扩展性负电容场效应管","authors":"C. Fan, Chun‐Hu Cheng, C. Tu, Chien Liu, Wan-Hsin Chen, Tun-Jen Chang, Chun-Yen Chang","doi":"10.1109/VLSIT.2018.8510640","DOIUrl":null,"url":null,"abstract":"For the first time, we successfully demonstrated that the 4-nm-thick dopant-free HfO2 NCFETs using gate strain can implement an energy-efficient switch of a low gate overdrive voltage and a nearly hysteresis-free sub-40 mV/dec swing. The gate strain favorably rearranges oxygen vacancies and boosts orthorhombic phase transition. Furthermore, the dopant-free HfO2 NCFET can be further improved by in-situ nitridation process. The 4-nm-thick nitrided HfO2 NCFETs achieve a steep symmetric sub-35 mV/dec switch, a sustained sub-40 mV/dec SS distribution, and excellent stress immunity during NC switch. The high-scalability and dopant-free NCFET shows the great potential for the application of future highly-scaled 3D CMOS technology.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"64 1","pages":"139-140"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Achieving High-Scalability Negative Capacitance FETs with Uniform Sub-35 mV/dec Switch Using Dopant-Free Hafnium Oxide and Gate Strain\",\"authors\":\"C. Fan, Chun‐Hu Cheng, C. Tu, Chien Liu, Wan-Hsin Chen, Tun-Jen Chang, Chun-Yen Chang\",\"doi\":\"10.1109/VLSIT.2018.8510640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we successfully demonstrated that the 4-nm-thick dopant-free HfO2 NCFETs using gate strain can implement an energy-efficient switch of a low gate overdrive voltage and a nearly hysteresis-free sub-40 mV/dec swing. The gate strain favorably rearranges oxygen vacancies and boosts orthorhombic phase transition. Furthermore, the dopant-free HfO2 NCFET can be further improved by in-situ nitridation process. The 4-nm-thick nitrided HfO2 NCFETs achieve a steep symmetric sub-35 mV/dec switch, a sustained sub-40 mV/dec SS distribution, and excellent stress immunity during NC switch. The high-scalability and dopant-free NCFET shows the great potential for the application of future highly-scaled 3D CMOS technology.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"64 1\",\"pages\":\"139-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving High-Scalability Negative Capacitance FETs with Uniform Sub-35 mV/dec Switch Using Dopant-Free Hafnium Oxide and Gate Strain
For the first time, we successfully demonstrated that the 4-nm-thick dopant-free HfO2 NCFETs using gate strain can implement an energy-efficient switch of a low gate overdrive voltage and a nearly hysteresis-free sub-40 mV/dec swing. The gate strain favorably rearranges oxygen vacancies and boosts orthorhombic phase transition. Furthermore, the dopant-free HfO2 NCFET can be further improved by in-situ nitridation process. The 4-nm-thick nitrided HfO2 NCFETs achieve a steep symmetric sub-35 mV/dec switch, a sustained sub-40 mV/dec SS distribution, and excellent stress immunity during NC switch. The high-scalability and dopant-free NCFET shows the great potential for the application of future highly-scaled 3D CMOS technology.