半无限弹性条的低频衰减条件

E. Babenkova, J. Kaplunov
{"title":"半无限弹性条的低频衰减条件","authors":"E. Babenkova, J. Kaplunov","doi":"10.1098/rspa.2003.1275","DOIUrl":null,"url":null,"abstract":"In this paper we investigate in–plane harmonic vibrations of a semi–infinite elastic strip with prescribed edge stresses. Low–frequency decay conditions are established demonstrating the deviation from the classical Saint–Venant principle in quadratic terms in frequency. In the case of the symmetric motion (strip extension), the proposed correction is expressed explicitly in terms of given end data, whereas for the antisymmetric motion (strip bending) this also involves unknown edge displacements. Further applications are defined including those related to dynamic analysis of plates and shells excited by statically self–equilibrated edge loads. The derivation is based on a perturbation approach using the Laplace transform technique. We also address methodological aspects dealing with a continuous eigenspectrum and the two–parametric nature of the problem.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Low–frequency decay conditions for a semi–infinite elastic strip\",\"authors\":\"E. Babenkova, J. Kaplunov\",\"doi\":\"10.1098/rspa.2003.1275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate in–plane harmonic vibrations of a semi–infinite elastic strip with prescribed edge stresses. Low–frequency decay conditions are established demonstrating the deviation from the classical Saint–Venant principle in quadratic terms in frequency. In the case of the symmetric motion (strip extension), the proposed correction is expressed explicitly in terms of given end data, whereas for the antisymmetric motion (strip bending) this also involves unknown edge displacements. Further applications are defined including those related to dynamic analysis of plates and shells excited by statically self–equilibrated edge loads. The derivation is based on a perturbation approach using the Laplace transform technique. We also address methodological aspects dealing with a continuous eigenspectrum and the two–parametric nature of the problem.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2003.1275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文研究了具有规定边缘应力的半无限弹性条的面内谐波振动。建立了低频衰减条件,证明了频率二次项与经典圣维南原理的偏差。在对称运动(带材延伸)的情况下,提出的修正是明确地表示在给定的端数据,而对于反对称运动(带材弯曲),这也涉及未知的边缘位移。进一步的应用被定义,包括那些与受静态自平衡边缘载荷激励的板壳的动态分析有关的应用。推导是基于使用拉普拉斯变换技术的微扰方法。我们还讨论了处理连续特征谱和问题的双参数性质的方法方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low–frequency decay conditions for a semi–infinite elastic strip
In this paper we investigate in–plane harmonic vibrations of a semi–infinite elastic strip with prescribed edge stresses. Low–frequency decay conditions are established demonstrating the deviation from the classical Saint–Venant principle in quadratic terms in frequency. In the case of the symmetric motion (strip extension), the proposed correction is expressed explicitly in terms of given end data, whereas for the antisymmetric motion (strip bending) this also involves unknown edge displacements. Further applications are defined including those related to dynamic analysis of plates and shells excited by statically self–equilibrated edge loads. The derivation is based on a perturbation approach using the Laplace transform technique. We also address methodological aspects dealing with a continuous eigenspectrum and the two–parametric nature of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信