具有一般物流源的食物链模型的全局有界性

IF 0.5 4区 数学 Q3 MATHEMATICS
Lu Xu, Li Yang, Qiao Xin
{"title":"具有一般物流源的食物链模型的全局有界性","authors":"Lu Xu, Li Yang, Qiao Xin","doi":"10.1063/5.0151144","DOIUrl":null,"url":null,"abstract":"This paper concerns the higher-dimensional food chain model with a general logistic source ut = Δu + u(1 − uα−1 − v − w), vt = Δv − ∇·(ξv∇u) + v(1 − vβ−1 + u − w), wt = Δw − ∇·(χw∇v) + w(1 − wγ−1 + v + u) in a smooth bounded domain Ω ⊂ Rn(n ≥ 2) with homogeneous Neumann boundary conditions. It is shown that for some conditions on the logistic degradation rates, this problem possesses a globally defined bounded classical solution.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"42 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness for a food chain model with general logistic source\",\"authors\":\"Lu Xu, Li Yang, Qiao Xin\",\"doi\":\"10.1063/5.0151144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the higher-dimensional food chain model with a general logistic source ut = Δu + u(1 − uα−1 − v − w), vt = Δv − ∇·(ξv∇u) + v(1 − vβ−1 + u − w), wt = Δw − ∇·(χw∇v) + w(1 − wγ−1 + v + u) in a smooth bounded domain Ω ⊂ Rn(n ≥ 2) with homogeneous Neumann boundary conditions. It is shown that for some conditions on the logistic degradation rates, this problem possesses a globally defined bounded classical solution.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0151144\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0151144","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有一般逻辑源ut = Δu + u(1−uα−1−v−w), vt = Δv−∇·(ξv∇u) + v(1−vβ−1 + u−w), wt = Δw−∇·(χw∇v) + w(1−wγ−1 + v + u)的高维食物链模型,在光滑有界域Ω∧Rn(n≥2)具有齐次诺伊曼边界条件。结果表明,对于某些逻辑退化率条件,该问题具有全局定义的有界经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness for a food chain model with general logistic source
This paper concerns the higher-dimensional food chain model with a general logistic source ut = Δu + u(1 − uα−1 − v − w), vt = Δv − ∇·(ξv∇u) + v(1 − vβ−1 + u − w), wt = Δw − ∇·(χw∇v) + w(1 − wγ−1 + v + u) in a smooth bounded domain Ω ⊂ Rn(n ≥ 2) with homogeneous Neumann boundary conditions. It is shown that for some conditions on the logistic degradation rates, this problem possesses a globally defined bounded classical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信