Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal
求助PDF
{"title":"交换环的全图和零因子图的拓扑指标:一个多项式方法","authors":"Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal","doi":"10.1155/2023/6815657","DOIUrl":null,"url":null,"abstract":"<jats:p>The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>T</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>\n <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the zero divisor graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi mathvariant=\"normal\">Γ</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>r</mi>\n </math>\n </jats:inline-formula> is prime, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>n</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>), and the zero divisor graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi mathvariant=\"normal\">Γ</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </math>\n </jats:inline-formula> are primes) are computed using some algebraic polynomials.</jats:p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"26 1","pages":"6815657:1-6815657:16"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological Indices of Total Graph and Zero Divisor Graph of Commutative Ring: A Polynomial Approach\",\"authors\":\"Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal\",\"doi\":\"10.1155/2023/6815657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>T</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>\\n <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the zero divisor graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>r</mi>\\n </math>\\n </jats:inline-formula> is prime, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>n</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>), and the zero divisor graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </math>\\n </jats:inline-formula> are primes) are computed using some algebraic polynomials.</jats:p>\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"26 1\",\"pages\":\"6815657:1-6815657:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6815657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6815657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Topological Indices of Total Graph and Zero Divisor Graph of Commutative Ring: A Polynomial Approach
The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph
T
ℤ
n
n
∈
ℤ
+
, the zero divisor graph
Γ
ℤ
r
n
(
r
is prime,
n
∈
ℤ
+
), and the zero divisor graph
Γ
ℤ
r
×
ℤ
s
×
ℤ
t
(
r
,
s
,
t
are primes) are computed using some algebraic polynomials.