交换环的全图和零因子图的拓扑指标:一个多项式方法

Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal
{"title":"交换环的全图和零因子图的拓扑指标:一个多项式方法","authors":"Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal","doi":"10.1155/2023/6815657","DOIUrl":null,"url":null,"abstract":"<jats:p>The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>T</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>\n <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the zero divisor graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi mathvariant=\"normal\">Γ</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>r</mi>\n </math>\n </jats:inline-formula> is prime, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>n</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>), and the zero divisor graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi mathvariant=\"normal\">Γ</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>t</mi>\n </math>\n </jats:inline-formula> are primes) are computed using some algebraic polynomials.</jats:p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"26 1","pages":"6815657:1-6815657:16"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological Indices of Total Graph and Zero Divisor Graph of Commutative Ring: A Polynomial Approach\",\"authors\":\"Sourav Mondal, Muhammad Imran, Nilanjan De, A. Pal\",\"doi\":\"10.1155/2023/6815657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>T</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>\\n <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the zero divisor graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>r</mi>\\n </math>\\n </jats:inline-formula> is prime, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>n</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>), and the zero divisor graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </math>\\n </jats:inline-formula> are primes) are computed using some algebraic polynomials.</jats:p>\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"26 1\",\"pages\":\"6815657:1-6815657:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6815657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6815657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

代数多项式在数学化学中起着重要的作用,用于计算基于距离、基于度-距离和基于度的拓扑指标的精确表达式。拓扑指数是研究分子结构与其不同性质和活性之间的定量构效关系(QSAR)和定量构效关系(QSPR)的重要工具。包含有限交换环的图在机器人、信息与通信理论、椭圆曲线密码学、物理学和统计学中有着广泛的应用。在本文中,总图ttn的拓扑指标N∈N +,零因子图Γ 0 rN (r)是'N∈N +),零因子图Γ r ×s × t(r, s, t是素数)是用代数多项式计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Indices of Total Graph and Zero Divisor Graph of Commutative Ring: A Polynomial Approach
The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph T n n + , the zero divisor graph Γ r n ( r is prime, n + ), and the zero divisor graph Γ r × s × t ( r , s , t are primes) are computed using some algebraic polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信