{"title":"分数阶p(x,·)-带权拉普拉斯Dirichlet问题的弱解","authors":"M. Ait Hammou","doi":"10.1515/anly-2021-1007","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ( x , ⋅ ) {p(x,\\cdot\\,)} -Laplacian operator of the following form: { ( - Δ p ( x , ⋅ ) ) s u ( x ) + w ( x ) | u | p ¯ ( x ) - 2 u = λ f ( x , u ) in Ω , u = 0 in ℝ N ∖ Ω , \\left\\{\\begin{aligned} \\displaystyle(-\\Delta_{p(x,\\cdot\\,)})^{s}u(x)+w(x)% \\lvert u\\rvert^{\\bar{p}(x)-2}u&\\displaystyle=\\lambda f(x,u)&&\\displaystyle% \\phantom{}\\text{in }\\Omega,\\\\ \\displaystyle u&\\displaystyle=0&&\\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{% N}\\setminus\\Omega,\\end{aligned}\\right. The main tool used for this purpose is the Berkovits topological degree.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"110 1","pages":"121 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight\",\"authors\":\"M. Ait Hammou\",\"doi\":\"10.1515/anly-2021-1007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ( x , ⋅ ) {p(x,\\\\cdot\\\\,)} -Laplacian operator of the following form: { ( - Δ p ( x , ⋅ ) ) s u ( x ) + w ( x ) | u | p ¯ ( x ) - 2 u = λ f ( x , u ) in Ω , u = 0 in ℝ N ∖ Ω , \\\\left\\\\{\\\\begin{aligned} \\\\displaystyle(-\\\\Delta_{p(x,\\\\cdot\\\\,)})^{s}u(x)+w(x)% \\\\lvert u\\\\rvert^{\\\\bar{p}(x)-2}u&\\\\displaystyle=\\\\lambda f(x,u)&&\\\\displaystyle% \\\\phantom{}\\\\text{in }\\\\Omega,\\\\\\\\ \\\\displaystyle u&\\\\displaystyle=0&&\\\\displaystyle\\\\phantom{}\\\\text{in }\\\\mathbb{R}^{% N}\\\\setminus\\\\Omega,\\\\end{aligned}\\\\right. The main tool used for this purpose is the Berkovits topological degree.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"110 1\",\"pages\":\"121 - 132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2021-1007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight
Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ( x , ⋅ ) {p(x,\cdot\,)} -Laplacian operator of the following form: { ( - Δ p ( x , ⋅ ) ) s u ( x ) + w ( x ) | u | p ¯ ( x ) - 2 u = λ f ( x , u ) in Ω , u = 0 in ℝ N ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta_{p(x,\cdot\,)})^{s}u(x)+w(x)% \lvert u\rvert^{\bar{p}(x)-2}u&\displaystyle=\lambda f(x,u)&&\displaystyle% \phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. The main tool used for this purpose is the Berkovits topological degree.