分数阶p(x,·)-带权拉普拉斯Dirichlet问题的弱解

M. Ait Hammou
{"title":"分数阶p(x,·)-带权拉普拉斯Dirichlet问题的弱解","authors":"M. Ait Hammou","doi":"10.1515/anly-2021-1007","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ⁢ ( x , ⋅ ) {p(x,\\cdot\\,)} -Laplacian operator of the following form: { ( - Δ p ⁢ ( x , ⋅ ) ) s ⁢ u ⁢ ( x ) + w ⁢ ( x ) ⁢ | u | p ¯ ⁢ ( x ) - 2 ⁢ u = λ ⁢ f ⁢ ( x , u ) in ⁢ Ω , u = 0 in ⁢ ℝ N ∖ Ω , \\left\\{\\begin{aligned} \\displaystyle(-\\Delta_{p(x,\\cdot\\,)})^{s}u(x)+w(x)% \\lvert u\\rvert^{\\bar{p}(x)-2}u&\\displaystyle=\\lambda f(x,u)&&\\displaystyle% \\phantom{}\\text{in }\\Omega,\\\\ \\displaystyle u&\\displaystyle=0&&\\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{% N}\\setminus\\Omega,\\end{aligned}\\right. The main tool used for this purpose is the Berkovits topological degree.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"110 1","pages":"121 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight\",\"authors\":\"M. Ait Hammou\",\"doi\":\"10.1515/anly-2021-1007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ⁢ ( x , ⋅ ) {p(x,\\\\cdot\\\\,)} -Laplacian operator of the following form: { ( - Δ p ⁢ ( x , ⋅ ) ) s ⁢ u ⁢ ( x ) + w ⁢ ( x ) ⁢ | u | p ¯ ⁢ ( x ) - 2 ⁢ u = λ ⁢ f ⁢ ( x , u ) in ⁢ Ω , u = 0 in ⁢ ℝ N ∖ Ω , \\\\left\\\\{\\\\begin{aligned} \\\\displaystyle(-\\\\Delta_{p(x,\\\\cdot\\\\,)})^{s}u(x)+w(x)% \\\\lvert u\\\\rvert^{\\\\bar{p}(x)-2}u&\\\\displaystyle=\\\\lambda f(x,u)&&\\\\displaystyle% \\\\phantom{}\\\\text{in }\\\\Omega,\\\\\\\\ \\\\displaystyle u&\\\\displaystyle=0&&\\\\displaystyle\\\\phantom{}\\\\text{in }\\\\mathbb{R}^{% N}\\\\setminus\\\\Omega,\\\\end{aligned}\\\\right. The main tool used for this purpose is the Berkovits topological degree.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"110 1\",\"pages\":\"121 - 132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2021-1007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文的主要目的是证明含有分数阶p≠(x,⋅){p(x,\cdot\,)} -拉普拉斯算子的弱解的存在性,其形式如下:{(-Δp⁢(x,⋅))s⁢u⁢(x) + w⁢(x)⁢| | p u¯⁢(x) - 2⁢u =λ⁢f⁢(x, u)⁢Ω,u = 0⁢ℝN∖Ω,\左\{{对齐}\ \开始displaystyle (- \ Delta_ {p (x \ cdot \)}) ^{年代}u (x) + w (x) % \ lvert u \ rvert ^{酒吧\ p {} (x) 2} u \ displaystyle = \λf (x, u) & & % \ \ displaystyle幻影{}\文本的{}\ω,\ \ \ displaystyle u \ displaystyle = 0 & & \ displaystyle \幻影{}\文本的{}\ mathbb {R} ^ {% N} \ setminus \ω,\{对齐}\正确的结束。用于此目的的主要工具是Berkovits拓扑度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight
Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ⁢ ( x , ⋅ ) {p(x,\cdot\,)} -Laplacian operator of the following form: { ( - Δ p ⁢ ( x , ⋅ ) ) s ⁢ u ⁢ ( x ) + w ⁢ ( x ) ⁢ | u | p ¯ ⁢ ( x ) - 2 ⁢ u = λ ⁢ f ⁢ ( x , u ) in ⁢ Ω , u = 0 in ⁢ ℝ N ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta_{p(x,\cdot\,)})^{s}u(x)+w(x)% \lvert u\rvert^{\bar{p}(x)-2}u&\displaystyle=\lambda f(x,u)&&\displaystyle% \phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. The main tool used for this purpose is the Berkovits topological degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信