{"title":"褪黑素与相分离:潜在的相互作用及其意义","authors":"D. Loh, R. Reiter","doi":"10.32794/mr112500128","DOIUrl":null,"url":null,"abstract":"This commentary explores the leading edge of current understanding of the potential interactions associated with melatonin and the regulation of membraneless organelles (MLOs) formed via liquid‐liquid phase separation (LLPS) presented in recently published hypothetical reviews. As the scientific community increasingly recognizes the relevance of biomolecular condensates as fundamental organizers and propellers of cellular biochemistry, and that LLPS may be the quintessential process that provides insight into elusive physiological and pathological cellular conditions, the ancient role of melatonin in this new and exciting framework of cellular biology must be fully realized to its maximum potential.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Melatonin and phase separation: potential interactions and significance\",\"authors\":\"D. Loh, R. Reiter\",\"doi\":\"10.32794/mr112500128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This commentary explores the leading edge of current understanding of the potential interactions associated with melatonin and the regulation of membraneless organelles (MLOs) formed via liquid‐liquid phase separation (LLPS) presented in recently published hypothetical reviews. As the scientific community increasingly recognizes the relevance of biomolecular condensates as fundamental organizers and propellers of cellular biochemistry, and that LLPS may be the quintessential process that provides insight into elusive physiological and pathological cellular conditions, the ancient role of melatonin in this new and exciting framework of cellular biology must be fully realized to its maximum potential.\",\"PeriodicalId\":18604,\"journal\":{\"name\":\"Melatonin Research\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melatonin Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32794/mr112500128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Melatonin and phase separation: potential interactions and significance
This commentary explores the leading edge of current understanding of the potential interactions associated with melatonin and the regulation of membraneless organelles (MLOs) formed via liquid‐liquid phase separation (LLPS) presented in recently published hypothetical reviews. As the scientific community increasingly recognizes the relevance of biomolecular condensates as fundamental organizers and propellers of cellular biochemistry, and that LLPS may be the quintessential process that provides insight into elusive physiological and pathological cellular conditions, the ancient role of melatonin in this new and exciting framework of cellular biology must be fully realized to its maximum potential.