S. Ura, T. Majima, K. Kintaka, K. Hatanaka, J. Inoue, K. Nishio, Y. Awatsuji
{"title":"带腔谐振器的小孔径导模谐振滤波器","authors":"S. Ura, T. Majima, K. Kintaka, K. Hatanaka, J. Inoue, K. Nishio, Y. Awatsuji","doi":"10.1109/ECTC.2012.6249036","DOIUrl":null,"url":null,"abstract":"A cavity-resonator-integrated guided-mode-resonance filter (CRIGF) consisting of a grating coupler (GC) and a pair of distributed-Bragg-reflectors (DBRs) on a thin film waveguide has been recently proposed and investigated to provide a narrow-band reflection spectrum for an incident wave of a small beam width from the free space. A CRIGF demonstrated so far shows polarization dependence because propagation constants of guided waves excited by GC are different between TE and TM incident waves. In order to construct a polarization-independent guided-mode resonance filter with small aperture, an integration of two CRIGFs crossed each other was proposed and discussed in this paper. A device was designed for a resonance wavelength of 1550 nm and its reflection and transmission spectra were predicted by a newly developed analysis based on the coupled-mode theory. A reflectance of 96 % with 1 nm bandwidth was expected for an incident beam diameter of 10 μm. A test sample working at 846 nm was fabricated and characterized. A Ge:SiO2 guiding core layer was deposited on a SiO2 glass substrate, and GC and DBRs were formed by the electron-beam direct writing lithography. Measured reflection spectra for TE and TM incident beams were well coincident with each other.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"11 1","pages":"1511-1517"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small-aperture guided-mode-resonance filter with cavity resonators\",\"authors\":\"S. Ura, T. Majima, K. Kintaka, K. Hatanaka, J. Inoue, K. Nishio, Y. Awatsuji\",\"doi\":\"10.1109/ECTC.2012.6249036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cavity-resonator-integrated guided-mode-resonance filter (CRIGF) consisting of a grating coupler (GC) and a pair of distributed-Bragg-reflectors (DBRs) on a thin film waveguide has been recently proposed and investigated to provide a narrow-band reflection spectrum for an incident wave of a small beam width from the free space. A CRIGF demonstrated so far shows polarization dependence because propagation constants of guided waves excited by GC are different between TE and TM incident waves. In order to construct a polarization-independent guided-mode resonance filter with small aperture, an integration of two CRIGFs crossed each other was proposed and discussed in this paper. A device was designed for a resonance wavelength of 1550 nm and its reflection and transmission spectra were predicted by a newly developed analysis based on the coupled-mode theory. A reflectance of 96 % with 1 nm bandwidth was expected for an incident beam diameter of 10 μm. A test sample working at 846 nm was fabricated and characterized. A Ge:SiO2 guiding core layer was deposited on a SiO2 glass substrate, and GC and DBRs were formed by the electron-beam direct writing lithography. Measured reflection spectra for TE and TM incident beams were well coincident with each other.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":\"11 1\",\"pages\":\"1511-1517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6249036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small-aperture guided-mode-resonance filter with cavity resonators
A cavity-resonator-integrated guided-mode-resonance filter (CRIGF) consisting of a grating coupler (GC) and a pair of distributed-Bragg-reflectors (DBRs) on a thin film waveguide has been recently proposed and investigated to provide a narrow-band reflection spectrum for an incident wave of a small beam width from the free space. A CRIGF demonstrated so far shows polarization dependence because propagation constants of guided waves excited by GC are different between TE and TM incident waves. In order to construct a polarization-independent guided-mode resonance filter with small aperture, an integration of two CRIGFs crossed each other was proposed and discussed in this paper. A device was designed for a resonance wavelength of 1550 nm and its reflection and transmission spectra were predicted by a newly developed analysis based on the coupled-mode theory. A reflectance of 96 % with 1 nm bandwidth was expected for an incident beam diameter of 10 μm. A test sample working at 846 nm was fabricated and characterized. A Ge:SiO2 guiding core layer was deposited on a SiO2 glass substrate, and GC and DBRs were formed by the electron-beam direct writing lithography. Measured reflection spectra for TE and TM incident beams were well coincident with each other.