Rashmi Kesherwani, Sukanya Bhoumik, Raushan Kumar, Syed Ibrahim Rizvi
{"title":"低剂量谷氨酸一钠也可能影响大鼠的氧化应激、炎症和神经退行性变","authors":"Rashmi Kesherwani, Sukanya Bhoumik, Raushan Kumar, Syed Ibrahim Rizvi","doi":"10.1007/s12291-022-01077-1","DOIUrl":null,"url":null,"abstract":"<p><p>Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.</p>","PeriodicalId":49400,"journal":{"name":"Ultraschall in Der Medizin","volume":"27 1","pages":"101-109"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784434/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats.\",\"authors\":\"Rashmi Kesherwani, Sukanya Bhoumik, Raushan Kumar, Syed Ibrahim Rizvi\",\"doi\":\"10.1007/s12291-022-01077-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.</p>\",\"PeriodicalId\":49400,\"journal\":{\"name\":\"Ultraschall in Der Medizin\",\"volume\":\"27 1\",\"pages\":\"101-109\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784434/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultraschall in Der Medizin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12291-022-01077-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultraschall in Der Medizin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12291-022-01077-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats.
Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.
期刊介绍:
Ultraschall in der Medizin / European Journal of Ultrasound publishes scientific papers and contributions from a variety of disciplines on the diagnostic and therapeutic applications of ultrasound with an emphasis on clinical application. Technical papers with a physiological theme as well as the interaction between ultrasound and biological systems might also occasionally be considered for peer review and publication, provided that the translational relevance is high and the link with clinical applications is tight. The editors and the publishers reserve the right to publish selected articles online only. Authors are welcome to submit supplementary video material. Letters and comments are also accepted, promoting a vivid exchange of opinions and scientific discussions.