{"title":"关于每个完全数都是三角形数这一命题","authors":"John A. Fossa","doi":"10.47976/rbhm2020v20n4032-45","DOIUrl":null,"url":null,"abstract":"A proposiçao de que todo número perfeito é um número triangular era conhecida desde a antiguidade, pois foi conhecido por Jâmblico e, provavelmente, por Nicômacho. Depois de considerar os quatro tipos de perfeição dados por Jâmblico, apresenta-se as demonstrações de Jordanus, Bouvelles (demonstração por exemplificação) e Maurolico para a referida proposição. Todas elas supõem, no entanto, a recíproca do teorema IX.36 de Euclides, que só foi demonstrada, para números perfeitos pares, posteriormente por Euler.","PeriodicalId":34320,"journal":{"name":"Revista Brasileira de Historia da Matematica","volume":"22 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobre a Proposição de que Todo Número Perfeito é um Número Triangular\",\"authors\":\"John A. Fossa\",\"doi\":\"10.47976/rbhm2020v20n4032-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A proposiçao de que todo número perfeito é um número triangular era conhecida desde a antiguidade, pois foi conhecido por Jâmblico e, provavelmente, por Nicômacho. Depois de considerar os quatro tipos de perfeição dados por Jâmblico, apresenta-se as demonstrações de Jordanus, Bouvelles (demonstração por exemplificação) e Maurolico para a referida proposição. Todas elas supõem, no entanto, a recíproca do teorema IX.36 de Euclides, que só foi demonstrada, para números perfeitos pares, posteriormente por Euler.\",\"PeriodicalId\":34320,\"journal\":{\"name\":\"Revista Brasileira de Historia da Matematica\",\"volume\":\"22 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Historia da Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47976/rbhm2020v20n4032-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Historia da Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47976/rbhm2020v20n4032-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sobre a Proposição de que Todo Número Perfeito é um Número Triangular
A proposiçao de que todo número perfeito é um número triangular era conhecida desde a antiguidade, pois foi conhecido por Jâmblico e, provavelmente, por Nicômacho. Depois de considerar os quatro tipos de perfeição dados por Jâmblico, apresenta-se as demonstrações de Jordanus, Bouvelles (demonstração por exemplificação) e Maurolico para a referida proposição. Todas elas supõem, no entanto, a recíproca do teorema IX.36 de Euclides, que só foi demonstrada, para números perfeitos pares, posteriormente por Euler.