机械力对牙干细胞行为的影响:体外研究综述

Q4 Biochemistry, Genetics and Molecular Biology
M. Rad, Sadra Mohaghegh, Farnaz Kouhestani, S. Motamedian
{"title":"机械力对牙干细胞行为的影响:体外研究综述","authors":"M. Rad, Sadra Mohaghegh, Farnaz Kouhestani, S. Motamedian","doi":"10.32604/MCB.2021.015136","DOIUrl":null,"url":null,"abstract":"This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total of 18 studies published from 2008–2019 were included. Nine studies were focusing on Periodontal ligament Stem Cells (PDLSCs), eight studies on Dental Pulp Stem Cells (DPSCs) and one study on Stem Cells from Apical Papilla (SCAP). Results showed that tension, three-dimensional stress and simulated microgravity promoted the proliferation and osteogenic differentiation of PDLSCs. DPSCs proliferation increased after microgravity and tension exertion. In addition, dynamic hydrostatic pressure and compression promoted odontogenic differentiation of DPSCs. Besides, mechanical stimuli increased the osteogenic differentiation of DPSCs. One study analyzed the effect of carrier features on the response of DSCs to 3D-stress and showed that cells cultivated on scaffolds with 30% bioactive glass (BAG) had the highest osteogenic differentiation compared to other ratios of BAG. It has been shown that increasing the duration of tension (i.e., from 3 h to 24 h force application) enhanced the positive effect of force application on the osteogenic differentiation of DSCs. In conclusion, all types of mechanical forces except uniaxial tension increased the osteogenic/odontogenic differentiation of DSCs. In addition, the effect of mechanical stimulation on the proliferation of DSCs differs based on the type of stem cells and mechanical force.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Mechanical Forces on the Behavior of Dental Stem Cells: A Scoping Review of In-Vitro Studies\",\"authors\":\"M. Rad, Sadra Mohaghegh, Farnaz Kouhestani, S. Motamedian\",\"doi\":\"10.32604/MCB.2021.015136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total of 18 studies published from 2008–2019 were included. Nine studies were focusing on Periodontal ligament Stem Cells (PDLSCs), eight studies on Dental Pulp Stem Cells (DPSCs) and one study on Stem Cells from Apical Papilla (SCAP). Results showed that tension, three-dimensional stress and simulated microgravity promoted the proliferation and osteogenic differentiation of PDLSCs. DPSCs proliferation increased after microgravity and tension exertion. In addition, dynamic hydrostatic pressure and compression promoted odontogenic differentiation of DPSCs. Besides, mechanical stimuli increased the osteogenic differentiation of DPSCs. One study analyzed the effect of carrier features on the response of DSCs to 3D-stress and showed that cells cultivated on scaffolds with 30% bioactive glass (BAG) had the highest osteogenic differentiation compared to other ratios of BAG. It has been shown that increasing the duration of tension (i.e., from 3 h to 24 h force application) enhanced the positive effect of force application on the osteogenic differentiation of DSCs. In conclusion, all types of mechanical forces except uniaxial tension increased the osteogenic/odontogenic differentiation of DSCs. In addition, the effect of mechanical stimulation on the proliferation of DSCs differs based on the type of stem cells and mechanical force.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/MCB.2021.015136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2021.015136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

本文对机械力对牙干细胞行为影响的研究进行了综述。PubMed和Scopus检索了评估张力、静水压力(即通过不可压缩流体施加的压力)、压缩、模拟微重力和振动对dsc影响的体外研究。分析以下因素:成骨/牙源性分化、增殖、粘附和迁移。根据系统评价的首选报告项目扩展范围评价(PRISMA-ScR)指南对文章进行审查。纳入的研究根据修订后的合并试验报告标准(CONSORT)进行评估。共纳入了2008-2019年发表的18项研究。其中牙周韧带干细胞(PDLSCs)研究9项,牙髓干细胞(DPSCs)研究8项,根尖乳头干细胞(SCAP)研究1项。结果表明,张力、三维应力和模拟微重力均能促进PDLSCs的增殖和成骨分化。微重力和张力作用后DPSCs增殖增加。动态静水压力和压缩促进DPSCs向牙源性分化。此外,机械刺激促进了DPSCs的成骨分化。一项研究分析了载体特征对DSCs对3d应激反应的影响,结果表明,与其他比例的BAG相比,30%生物活性玻璃(BAG)支架上培养的细胞具有最高的成骨分化率。研究表明,增加张力持续时间(即从3小时施加力到24小时施加力)增强了施加力对dsc成骨分化的积极作用。综上所述,除单轴拉力外,所有类型的机械力均能促进dsc的成骨/牙源性分化。此外,机械刺激对dsc增殖的影响因干细胞类型和机械力的不同而不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Mechanical Forces on the Behavior of Dental Stem Cells: A Scoping Review of In-Vitro Studies
This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total of 18 studies published from 2008–2019 were included. Nine studies were focusing on Periodontal ligament Stem Cells (PDLSCs), eight studies on Dental Pulp Stem Cells (DPSCs) and one study on Stem Cells from Apical Papilla (SCAP). Results showed that tension, three-dimensional stress and simulated microgravity promoted the proliferation and osteogenic differentiation of PDLSCs. DPSCs proliferation increased after microgravity and tension exertion. In addition, dynamic hydrostatic pressure and compression promoted odontogenic differentiation of DPSCs. Besides, mechanical stimuli increased the osteogenic differentiation of DPSCs. One study analyzed the effect of carrier features on the response of DSCs to 3D-stress and showed that cells cultivated on scaffolds with 30% bioactive glass (BAG) had the highest osteogenic differentiation compared to other ratios of BAG. It has been shown that increasing the duration of tension (i.e., from 3 h to 24 h force application) enhanced the positive effect of force application on the osteogenic differentiation of DSCs. In conclusion, all types of mechanical forces except uniaxial tension increased the osteogenic/odontogenic differentiation of DSCs. In addition, the effect of mechanical stimulation on the proliferation of DSCs differs based on the type of stem cells and mechanical force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信