C. Park, H. Lee, C. Ching, J. Ahn, R. Wang, M. Pakala, S. H. Kang
{"title":"10nm及以上STT-MRAM的低RA磁隧道结阵列与低开关电流和高击穿电压相结合","authors":"C. Park, H. Lee, C. Ching, J. Ahn, R. Wang, M. Pakala, S. H. Kang","doi":"10.1109/VLSIT.2018.8510653","DOIUrl":null,"url":null,"abstract":"The scaling of STT-MRAM for deeply scaled nodes (e.g. sub-10 nm CMOS) requires low resistance-area-product (RA) magnetic tunnel junctions (MTJs) to contain switching voltage (Vc) and to assure high endurance. In contrast to various reports, we demonstrate systematic engineering of low-RA MTJs without trading off key device attributes and remarkably, with higher barrier reliability. The MTJs integrate an ultra-thin synthetic antiferromagnetic layer (tSAF) with a Co/Pt pseudo-alloy pinned layer. By reducing RA from 10 to 5 Ωµm2, significantly reduced Vc and reliable switching at 5 ns have been achieved. Furthermore, the breakdown voltage (VBD) has been improved. The results suggest that the tunability of MTJ is extended to sub-10 nm CMOS for high-performance and high-reliability MRAM.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"25 1","pages":"185-186"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond\",\"authors\":\"C. Park, H. Lee, C. Ching, J. Ahn, R. Wang, M. Pakala, S. H. Kang\",\"doi\":\"10.1109/VLSIT.2018.8510653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling of STT-MRAM for deeply scaled nodes (e.g. sub-10 nm CMOS) requires low resistance-area-product (RA) magnetic tunnel junctions (MTJs) to contain switching voltage (Vc) and to assure high endurance. In contrast to various reports, we demonstrate systematic engineering of low-RA MTJs without trading off key device attributes and remarkably, with higher barrier reliability. The MTJs integrate an ultra-thin synthetic antiferromagnetic layer (tSAF) with a Co/Pt pseudo-alloy pinned layer. By reducing RA from 10 to 5 Ωµm2, significantly reduced Vc and reliable switching at 5 ns have been achieved. Furthermore, the breakdown voltage (VBD) has been improved. The results suggest that the tunability of MTJ is extended to sub-10 nm CMOS for high-performance and high-reliability MRAM.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"25 1\",\"pages\":\"185-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond
The scaling of STT-MRAM for deeply scaled nodes (e.g. sub-10 nm CMOS) requires low resistance-area-product (RA) magnetic tunnel junctions (MTJs) to contain switching voltage (Vc) and to assure high endurance. In contrast to various reports, we demonstrate systematic engineering of low-RA MTJs without trading off key device attributes and remarkably, with higher barrier reliability. The MTJs integrate an ultra-thin synthetic antiferromagnetic layer (tSAF) with a Co/Pt pseudo-alloy pinned layer. By reducing RA from 10 to 5 Ωµm2, significantly reduced Vc and reliable switching at 5 ns have been achieved. Furthermore, the breakdown voltage (VBD) has been improved. The results suggest that the tunability of MTJ is extended to sub-10 nm CMOS for high-performance and high-reliability MRAM.