{"title":"有障碍物的通道中Bingham-Papanastasiou正则化材料的流动:水动力与障碍物间距的关系","authors":"Asif Mehmood, R. Mahmood, A. Majeed, F. Awan","doi":"10.1155/2021/5583110","DOIUrl":null,"url":null,"abstract":"The numerical modeling and simulation for the stationary Bingham fluid flow around two confined circular cylinders with various gap ratios are studied. The singularity in the model’s apparent viscosity is dealt by Papanastasiou’s regularization. The model equations are discretized by adopting the methodology based on finite element method (FEM) by choosing a mixed higher order LBB-stable finite element pair. The direct solver PARADISO has been utilized to solve the linearized system of equations. Hydrodynamic forces represented by drag and lift coefficients are computed, and a correlation coefficient is calculated for the gap ratios and for several values of the Bingham number . Line graphs for horizontal and vertical velocities are drawn. Moreover, velocity and pressure profiles are plotted for pertinent values of the parameters. Plug and shear zones are revealed via velocity snapshots in the domain. Pressure is nonlinear in the vicinity of the obstacles and becomes linear downstream in the cylinders as expected in channel flows.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Flow of the Bingham-Papanastasiou Regularized Material in a Channel in the Presence of Obstacles: Correlation between Hydrodynamic Forces and Spacing of Obstacles\",\"authors\":\"Asif Mehmood, R. Mahmood, A. Majeed, F. Awan\",\"doi\":\"10.1155/2021/5583110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical modeling and simulation for the stationary Bingham fluid flow around two confined circular cylinders with various gap ratios are studied. The singularity in the model’s apparent viscosity is dealt by Papanastasiou’s regularization. The model equations are discretized by adopting the methodology based on finite element method (FEM) by choosing a mixed higher order LBB-stable finite element pair. The direct solver PARADISO has been utilized to solve the linearized system of equations. Hydrodynamic forces represented by drag and lift coefficients are computed, and a correlation coefficient is calculated for the gap ratios and for several values of the Bingham number . Line graphs for horizontal and vertical velocities are drawn. Moreover, velocity and pressure profiles are plotted for pertinent values of the parameters. Plug and shear zones are revealed via velocity snapshots in the domain. Pressure is nonlinear in the vicinity of the obstacles and becomes linear downstream in the cylinders as expected in channel flows.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5583110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5583110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Flow of the Bingham-Papanastasiou Regularized Material in a Channel in the Presence of Obstacles: Correlation between Hydrodynamic Forces and Spacing of Obstacles
The numerical modeling and simulation for the stationary Bingham fluid flow around two confined circular cylinders with various gap ratios are studied. The singularity in the model’s apparent viscosity is dealt by Papanastasiou’s regularization. The model equations are discretized by adopting the methodology based on finite element method (FEM) by choosing a mixed higher order LBB-stable finite element pair. The direct solver PARADISO has been utilized to solve the linearized system of equations. Hydrodynamic forces represented by drag and lift coefficients are computed, and a correlation coefficient is calculated for the gap ratios and for several values of the Bingham number . Line graphs for horizontal and vertical velocities are drawn. Moreover, velocity and pressure profiles are plotted for pertinent values of the parameters. Plug and shear zones are revealed via velocity snapshots in the domain. Pressure is nonlinear in the vicinity of the obstacles and becomes linear downstream in the cylinders as expected in channel flows.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.