正调和函数序列的局部一致收敛性

Dang Thinh Do, Le Dieu Linh Tran, Nhat Quy Hoang
{"title":"正调和函数序列的局部一致收敛性","authors":"Dang Thinh Do, Le Dieu Linh Tran, Nhat Quy Hoang","doi":"10.26459/hueunijns.v131i1d.6663","DOIUrl":null,"url":null,"abstract":"The Harnack distance on space  and its conformal invariance were constructed and studied by Herron. In this paper, we obtain the Harnack distance on domains  in . Then, we use this concept to investigate some properties of the positive harmonic function class. These results are obtained in the complex plane, so it is advantageous to take some tools of the complex analysis. The main result of this paper is the property of the local uniform convergence of the positive harmonic sequences on a domain in the complex plane.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The local uniform convergence of positive harmonic function sequence\",\"authors\":\"Dang Thinh Do, Le Dieu Linh Tran, Nhat Quy Hoang\",\"doi\":\"10.26459/hueunijns.v131i1d.6663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Harnack distance on space  and its conformal invariance were constructed and studied by Herron. In this paper, we obtain the Harnack distance on domains  in . Then, we use this concept to investigate some properties of the positive harmonic function class. These results are obtained in the complex plane, so it is advantageous to take some tools of the complex analysis. The main result of this paper is the property of the local uniform convergence of the positive harmonic sequences on a domain in the complex plane.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v131i1d.6663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v131i1d.6663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Herron构造并研究了空间上的Harnack距离及其共形不变性。在本文中,我们得到了域上的哈纳克距离。然后,我们利用这一概念研究了正调和函数类的一些性质。这些结果都是在复平面上得到的,因此利用复分析的一些工具是有利的。本文的主要结果是复平面上正调和数列局部一致收敛的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The local uniform convergence of positive harmonic function sequence
The Harnack distance on space  and its conformal invariance were constructed and studied by Herron. In this paper, we obtain the Harnack distance on domains  in . Then, we use this concept to investigate some properties of the positive harmonic function class. These results are obtained in the complex plane, so it is advantageous to take some tools of the complex analysis. The main result of this paper is the property of the local uniform convergence of the positive harmonic sequences on a domain in the complex plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信