关于有限群的𝜎-nilpotent超中心

Pub Date : 2022-05-07 DOI:10.1515/jgth-2021-0138
V. I. Murashka, A. Vasil'ev
{"title":"关于有限群的𝜎-nilpotent超中心","authors":"V. I. Murashka, A. Vasil'ev","doi":"10.1515/jgth-2021-0138","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝜎 be a partition of the set of all primes, and let 𝔉 denote a hereditary formation. We describe all formations 𝔉 for which the 𝔉-hypercenter and the intersection of weak 𝐾-𝔉-subnormalizers of all Sylow subgroups coincide in every finite group. In particular, the formation of all 𝜎-nilpotent groups has this property. With the help of our results, we solve a particular case of Shemetkov’s problem about the intersection of 𝔉-maximal subgroups and the 𝔉-hypercenter. As a corollary, we obtain Hall’s classical result about the hypercenter. We prove that the non-𝜎-nilpotent graph of a group is connected and its diameter is at most 3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the 𝜎-nilpotent hypercenter of finite groups\",\"authors\":\"V. I. Murashka, A. Vasil'ev\",\"doi\":\"10.1515/jgth-2021-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝜎 be a partition of the set of all primes, and let 𝔉 denote a hereditary formation. We describe all formations 𝔉 for which the 𝔉-hypercenter and the intersection of weak 𝐾-𝔉-subnormalizers of all Sylow subgroups coincide in every finite group. In particular, the formation of all 𝜎-nilpotent groups has this property. With the help of our results, we solve a particular case of Shemetkov’s problem about the intersection of 𝔉-maximal subgroups and the 𝔉-hypercenter. As a corollary, we obtain Hall’s classical result about the hypercenter. We prove that the non-𝜎-nilpotent graph of a group is connected and its diameter is at most 3.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:设φ是所有素数集合的一个划分,设𝔉表示一个遗传形成。我们描述了在每一个有限群中,所有Sylow子群的𝔉-hypercenter和弱的𝐾-𝔉-subnormalizers的交重合的所有编队𝔉。特别是,所有𝜎-nilpotent基团的形成都具有这个性质。借助我们的结果,我们解决了关于𝔉-maximal子群与𝔉-hypercenter子群相交的Shemetkov问题的一个特殊情况。作为推论,我们得到了关于超中心的霍尔经典结果。证明了群的非𝜎-nilpotent图是连通的,其直径不超过3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the 𝜎-nilpotent hypercenter of finite groups
Abstract Let 𝜎 be a partition of the set of all primes, and let 𝔉 denote a hereditary formation. We describe all formations 𝔉 for which the 𝔉-hypercenter and the intersection of weak 𝐾-𝔉-subnormalizers of all Sylow subgroups coincide in every finite group. In particular, the formation of all 𝜎-nilpotent groups has this property. With the help of our results, we solve a particular case of Shemetkov’s problem about the intersection of 𝔉-maximal subgroups and the 𝔉-hypercenter. As a corollary, we obtain Hall’s classical result about the hypercenter. We prove that the non-𝜎-nilpotent graph of a group is connected and its diameter is at most 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信