关于gasch兹补定理的逆

Pub Date : 2023-03-01 DOI:10.1515/jgth-2022-0178
Benjamin Sambale
{"title":"关于gasch<s:1>兹补定理的逆","authors":"Benjamin Sambale","doi":"10.1515/jgth-2022-0178","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝑁 be a normal subgroup of a finite group 𝐺. Let N ≤ H ≤ G N\\leq H\\leq G such that 𝑁 has a complement in 𝐻 and ( | N | , | G : H | ) = 1 (\\lvert N\\rvert,\\lvert G:H\\rvert)=1 . If 𝑁 is abelian, a theorem of Gaschütz asserts that 𝑁 has a complement in 𝐺 as well. Brandis has asked whether the commutativity of 𝑁 can be replaced by some weaker property. We prove that 𝑁 has a complement in 𝐺 whenever all Sylow subgroups of 𝑁 are abelian. On the other hand, we construct counterexamples if Z ⁢ ( N ) ∩ N ′ ≠ 1 \\mathrm{Z}(N)\\cap N^{\\prime}\\neq 1 . For metabelian groups 𝑁, the condition Z ⁢ ( N ) ∩ N ′ = 1 \\mathrm{Z}(N)\\cap N^{\\prime}=1 implies the existence of complements. Finally, if 𝑁 is perfect and centerless, then Gaschütz’ theorem holds for 𝑁 if and only if Inn ⁢ ( N ) \\mathrm{Inn}(N) has a complement in Aut ⁢ ( N ) \\mathrm{Aut}(N) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the converse of Gaschütz’ complement theorem\",\"authors\":\"Benjamin Sambale\",\"doi\":\"10.1515/jgth-2022-0178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝑁 be a normal subgroup of a finite group 𝐺. Let N ≤ H ≤ G N\\\\leq H\\\\leq G such that 𝑁 has a complement in 𝐻 and ( | N | , | G : H | ) = 1 (\\\\lvert N\\\\rvert,\\\\lvert G:H\\\\rvert)=1 . If 𝑁 is abelian, a theorem of Gaschütz asserts that 𝑁 has a complement in 𝐺 as well. Brandis has asked whether the commutativity of 𝑁 can be replaced by some weaker property. We prove that 𝑁 has a complement in 𝐺 whenever all Sylow subgroups of 𝑁 are abelian. On the other hand, we construct counterexamples if Z ⁢ ( N ) ∩ N ′ ≠ 1 \\\\mathrm{Z}(N)\\\\cap N^{\\\\prime}\\\\neq 1 . For metabelian groups 𝑁, the condition Z ⁢ ( N ) ∩ N ′ = 1 \\\\mathrm{Z}(N)\\\\cap N^{\\\\prime}=1 implies the existence of complements. Finally, if 𝑁 is perfect and centerless, then Gaschütz’ theorem holds for 𝑁 if and only if Inn ⁢ ( N ) \\\\mathrm{Inn}(N) has a complement in Aut ⁢ ( N ) \\\\mathrm{Aut}(N) .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要设无穷大群𝐺的正规子群。设N≤H≤G N \leq H \leq G使得在𝐻中存在一个补元并且(| N |, | G:H |)=1 (\lvert N \rvert, \lvert G:H \rvert)=1。如果抛掷是阿贝尔的,则抛掷的一个定理断言抛掷在𝐺中也有一个补。Brandis问过,是否可以用一些较弱的性质来代替二进制运算的交换性。证明了当所有的Sylow子群都是阿贝时,在𝐺中存在一个互补。另一方面,我们构造了Z≠(N)∩N '≠1 \mathrm{Z} (N) \cap N^ {\prime}\neq 1的反例。对于亚元群,条件Z≠(N)∩N ' =1 \mathrm{Z} (N) \cap N^ {\prime} =1暗示了补的存在性。最后,如果操作端是完美且无中心的,那么对于操作端,当且仅当Inn (N) \mathrm{Inn} (N)在Aut (N) \mathrm{Aut} (N)中有补时,gasch兹定理成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the converse of Gaschütz’ complement theorem
Abstract Let 𝑁 be a normal subgroup of a finite group 𝐺. Let N ≤ H ≤ G N\leq H\leq G such that 𝑁 has a complement in 𝐻 and ( | N | , | G : H | ) = 1 (\lvert N\rvert,\lvert G:H\rvert)=1 . If 𝑁 is abelian, a theorem of Gaschütz asserts that 𝑁 has a complement in 𝐺 as well. Brandis has asked whether the commutativity of 𝑁 can be replaced by some weaker property. We prove that 𝑁 has a complement in 𝐺 whenever all Sylow subgroups of 𝑁 are abelian. On the other hand, we construct counterexamples if Z ⁢ ( N ) ∩ N ′ ≠ 1 \mathrm{Z}(N)\cap N^{\prime}\neq 1 . For metabelian groups 𝑁, the condition Z ⁢ ( N ) ∩ N ′ = 1 \mathrm{Z}(N)\cap N^{\prime}=1 implies the existence of complements. Finally, if 𝑁 is perfect and centerless, then Gaschütz’ theorem holds for 𝑁 if and only if Inn ⁢ ( N ) \mathrm{Inn}(N) has a complement in Aut ⁢ ( N ) \mathrm{Aut}(N) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信