{"title":"一个涉及无序和统一根的猜想的证明","authors":"H. Wang, Zhi-Wei Sun","doi":"10.37236/11377","DOIUrl":null,"url":null,"abstract":"Let $n>1$ be an odd integer, and let $\\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\\sum_{\\tau\\in D(n-1)}\\mathrm{sign}(\\tau)\\prod_{j=1}^{n-1}\\frac{1+\\zeta^{j-\\tau(j)}}{1-\\zeta^{j-\\tau(j)}}=(-1)^{\\frac{n-1}{2}}\\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\\delta=0,1$ we determine the value of $\\det[x+m_{jk}]_{1\\leqslant j,k\\leqslant n-1}$ completely, where$$m_{jk}=\\begin{cases}(1+\\zeta^{j-k})/(1-\\zeta^{j-k})&\\text{if}\\ j\\not=k,\\\\\\delta&\\text{if}\\ j=k.\\end{cases}$$","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Proof of a Conjecture Involving Derangements and Roots of Unity\",\"authors\":\"H. Wang, Zhi-Wei Sun\",\"doi\":\"10.37236/11377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $n>1$ be an odd integer, and let $\\\\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\\\\sum_{\\\\tau\\\\in D(n-1)}\\\\mathrm{sign}(\\\\tau)\\\\prod_{j=1}^{n-1}\\\\frac{1+\\\\zeta^{j-\\\\tau(j)}}{1-\\\\zeta^{j-\\\\tau(j)}}=(-1)^{\\\\frac{n-1}{2}}\\\\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\\\\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\\\\delta=0,1$ we determine the value of $\\\\det[x+m_{jk}]_{1\\\\leqslant j,k\\\\leqslant n-1}$ completely, where$$m_{jk}=\\\\begin{cases}(1+\\\\zeta^{j-k})/(1-\\\\zeta^{j-k})&\\\\text{if}\\\\ j\\\\not=k,\\\\\\\\\\\\delta&\\\\text{if}\\\\ j=k.\\\\end{cases}$$\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11377\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11377","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Proof of a Conjecture Involving Derangements and Roots of Unity
Let $n>1$ be an odd integer, and let $\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\sum_{\tau\in D(n-1)}\mathrm{sign}(\tau)\prod_{j=1}^{n-1}\frac{1+\zeta^{j-\tau(j)}}{1-\zeta^{j-\tau(j)}}=(-1)^{\frac{n-1}{2}}\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\delta=0,1$ we determine the value of $\det[x+m_{jk}]_{1\leqslant j,k\leqslant n-1}$ completely, where$$m_{jk}=\begin{cases}(1+\zeta^{j-k})/(1-\zeta^{j-k})&\text{if}\ j\not=k,\\\delta&\text{if}\ j=k.\end{cases}$$
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.