基于Brauer-Picard群的融合范畴的循环扩展

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pinhas Grossman, D. Jordan, Noah Snyder
{"title":"基于Brauer-Picard群的融合范畴的循环扩展","authors":"Pinhas Grossman, D. Jordan, Noah Snyder","doi":"10.4171/QT/64","DOIUrl":null,"url":null,"abstract":"We construct a long exact sequence computing the obstruction space, pi_1(BrPic(C_0)), to G-graded extensions of a fusion category C_0. The other terms in the sequence can be computed directly from the fusion ring of C_0. We apply our result to several examples coming from small index subfactors, thereby constructing several new fusion categories as G-extensions. The most striking of these is a Z/2Z-extension of one of the Asaeda-Haagerup fusion categories, which is one of only two known 3-supertransitive fusion categories outside the ADE series. \nIn another direction, we show that our long exact sequence appears in exactly the way one expects: it is part of a long exact sequence of homotopy groups associated to a naturally occuring fibration. This motivates our constructions, and gives another example of the increasing interplay between fusion categories and algebraic topology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2012-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Cyclic extensions of fusion categories via the Brauer-Picard groupoid\",\"authors\":\"Pinhas Grossman, D. Jordan, Noah Snyder\",\"doi\":\"10.4171/QT/64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a long exact sequence computing the obstruction space, pi_1(BrPic(C_0)), to G-graded extensions of a fusion category C_0. The other terms in the sequence can be computed directly from the fusion ring of C_0. We apply our result to several examples coming from small index subfactors, thereby constructing several new fusion categories as G-extensions. The most striking of these is a Z/2Z-extension of one of the Asaeda-Haagerup fusion categories, which is one of only two known 3-supertransitive fusion categories outside the ADE series. \\nIn another direction, we show that our long exact sequence appears in exactly the way one expects: it is part of a long exact sequence of homotopy groups associated to a naturally occuring fibration. This motivates our constructions, and gives another example of the increasing interplay between fusion categories and algebraic topology.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2012-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/64\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/64","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19

摘要

构造了一个长精确序列,计算了一个融合范畴C_0的g级扩展的阻碍空间pi_1(BrPic(C_0))。序列中的其他项可以直接由C_0的融合环计算得到。我们将我们的结果应用到几个来自小指数子因子的例子中,从而构造了几个新的融合类别作为g扩展。其中最引人注目的是Asaeda-Haagerup聚变类别之一的Z/ 2z扩展,这是ADE系列之外仅有的两个已知的3-超传递聚变类别之一。在另一个方向上,我们证明了我们的长精确序列以人们期望的方式出现:它是与自然发生的纤维相关的同伦群的长精确序列的一部分。这激发了我们的构建,并给出了融合范畴和代数拓扑之间日益增加的相互作用的另一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic extensions of fusion categories via the Brauer-Picard groupoid
We construct a long exact sequence computing the obstruction space, pi_1(BrPic(C_0)), to G-graded extensions of a fusion category C_0. The other terms in the sequence can be computed directly from the fusion ring of C_0. We apply our result to several examples coming from small index subfactors, thereby constructing several new fusion categories as G-extensions. The most striking of these is a Z/2Z-extension of one of the Asaeda-Haagerup fusion categories, which is one of only two known 3-supertransitive fusion categories outside the ADE series. In another direction, we show that our long exact sequence appears in exactly the way one expects: it is part of a long exact sequence of homotopy groups associated to a naturally occuring fibration. This motivates our constructions, and gives another example of the increasing interplay between fusion categories and algebraic topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信