定制润湿性,以推动凝结的极限

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jianxing Sun , Patricia B. Weisensee
{"title":"定制润湿性,以推动凝结的极限","authors":"Jianxing Sun ,&nbsp;Patricia B. Weisensee","doi":"10.1016/j.cocis.2023.101739","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Wetting plays a crucial role in achieving efficient condensation in applications such as atmospheric water harvesting, air conditioning and refrigeration, and </span>thermal power<span> plants. Despite decades of research, the industrial implementation of dropwise condensation, which is often superior to filmwise condensation, has been limited, mostly due to the poor durability of promoter coatings and the challenge of achieving dropwise condensation for non-aqueous working fluids. Both areas have seen noteworthy advancements over the past few years, some of which we highlight in this review article. For example, recognizing that contact angle hysteresis, not contact angles </span></span><em>per se</em><span>, are responsible for enabling dropwise condensation, ultra-smooth liquid-like polymer coatings<span> and lubricant-infused surfaces were developed for use with water and non-aqueous working fluids. There are also several new developments for passive and active droplet removal. Advances in coating durability include a better understanding in the failure mechanisms and physics-informed designs of new coating processes<span> and chemistries.</span></span></span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"67 ","pages":"Article 101739"},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring wettability to push the limits of condensation\",\"authors\":\"Jianxing Sun ,&nbsp;Patricia B. Weisensee\",\"doi\":\"10.1016/j.cocis.2023.101739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Wetting plays a crucial role in achieving efficient condensation in applications such as atmospheric water harvesting, air conditioning and refrigeration, and </span>thermal power<span> plants. Despite decades of research, the industrial implementation of dropwise condensation, which is often superior to filmwise condensation, has been limited, mostly due to the poor durability of promoter coatings and the challenge of achieving dropwise condensation for non-aqueous working fluids. Both areas have seen noteworthy advancements over the past few years, some of which we highlight in this review article. For example, recognizing that contact angle hysteresis, not contact angles </span></span><em>per se</em><span>, are responsible for enabling dropwise condensation, ultra-smooth liquid-like polymer coatings<span> and lubricant-infused surfaces were developed for use with water and non-aqueous working fluids. There are also several new developments for passive and active droplet removal. Advances in coating durability include a better understanding in the failure mechanisms and physics-informed designs of new coating processes<span> and chemistries.</span></span></span></p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"67 \",\"pages\":\"Article 101739\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135902942300064X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942300064X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在大气集水、空调和制冷以及热电厂等应用中,润湿在实现高效冷凝方面起着至关重要的作用。尽管经过了几十年的研究,但通常优于膜状冷凝的滴状冷凝技术在工业上的应用仍然有限,主要原因是促进剂涂层的耐久性差,以及在非水工作流体中实现滴状冷凝的挑战。在过去几年中,这两个领域都取得了显著的进展,我们将在本文中重点介绍其中的一些进展。例如,认识到接触角的滞后,而不是接触角本身,是导致滴状冷凝的原因,因此开发了超光滑的液体状聚合物涂层和注入润滑剂的表面,可用于水和非水工作流体。在被动和主动去除液滴方面也有一些新的进展。涂层耐久性的进步包括对失效机制的更好理解和新涂层工艺和化学的物理信息设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring wettability to push the limits of condensation

Tailoring wettability to push the limits of condensation

Wetting plays a crucial role in achieving efficient condensation in applications such as atmospheric water harvesting, air conditioning and refrigeration, and thermal power plants. Despite decades of research, the industrial implementation of dropwise condensation, which is often superior to filmwise condensation, has been limited, mostly due to the poor durability of promoter coatings and the challenge of achieving dropwise condensation for non-aqueous working fluids. Both areas have seen noteworthy advancements over the past few years, some of which we highlight in this review article. For example, recognizing that contact angle hysteresis, not contact angles per se, are responsible for enabling dropwise condensation, ultra-smooth liquid-like polymer coatings and lubricant-infused surfaces were developed for use with water and non-aqueous working fluids. There are also several new developments for passive and active droplet removal. Advances in coating durability include a better understanding in the failure mechanisms and physics-informed designs of new coating processes and chemistries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信