二面体群的偏斜态射分类

Pub Date : 2022-11-16 DOI:10.1515/jgth-2022-0085
Kan Hu, I. Kovács, Young Soo Kwon
{"title":"二面体群的偏斜态射分类","authors":"Kan Hu, I. Kovács, Young Soo Kwon","doi":"10.1515/jgth-2022-0085","DOIUrl":null,"url":null,"abstract":"Abstract A skew morphism of a finite group 𝐴 is a permutation 𝜑 of 𝐴 fixing the identity element and for which there is an integer-valued function 𝜋 on 𝐴 such that φ ⁢ ( x ⁢ y ) = φ ⁢ ( x ) ⁢ φ π ⁢ ( x ) ⁢ ( y ) \\varphi(xy)=\\varphi(x)\\varphi^{\\pi(x)}(y) for all x , y ∈ A x,y\\in A . In this paper, we restrict ourselves to the case when A = D n A=D_{n} , the dihedral group of order 2 ⁢ n 2n . Wang et al. [Smooth skew morphisms of dihedral groups, Ars Math. Contemp. 16 (2019), 2, 527–547] determined all 𝜑 under the condition that π ( φ ( x ) ) ≡ π ( x ) ( mod | φ | ) ) \\pi(\\varphi(x))\\equiv\\pi(x)\\pmod{\\lvert\\varphi\\rvert}) holds for every x ∈ D n x\\in D_{n} , and later Kovács and Kwon [Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B 148 (2021), 84–124] characterised those 𝜑 such that there exists an inverse-closed ⟨ φ ⟩ \\langle\\varphi\\rangle -orbit, which generates D n D_{n} . We show that these two types of skew morphisms comprise all skew morphisms of D n D_{n} . The result is used to classify the finite groups with a complementary factorisation into a dihedral and a core-free cyclic subgroup. As another application, a formula for the total number of skew morphisms of D p t D_{p^{t}} is also derived for any prime 𝑝.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A classification of skew morphisms of dihedral groups\",\"authors\":\"Kan Hu, I. Kovács, Young Soo Kwon\",\"doi\":\"10.1515/jgth-2022-0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A skew morphism of a finite group 𝐴 is a permutation 𝜑 of 𝐴 fixing the identity element and for which there is an integer-valued function 𝜋 on 𝐴 such that φ ⁢ ( x ⁢ y ) = φ ⁢ ( x ) ⁢ φ π ⁢ ( x ) ⁢ ( y ) \\\\varphi(xy)=\\\\varphi(x)\\\\varphi^{\\\\pi(x)}(y) for all x , y ∈ A x,y\\\\in A . In this paper, we restrict ourselves to the case when A = D n A=D_{n} , the dihedral group of order 2 ⁢ n 2n . Wang et al. [Smooth skew morphisms of dihedral groups, Ars Math. Contemp. 16 (2019), 2, 527–547] determined all 𝜑 under the condition that π ( φ ( x ) ) ≡ π ( x ) ( mod | φ | ) ) \\\\pi(\\\\varphi(x))\\\\equiv\\\\pi(x)\\\\pmod{\\\\lvert\\\\varphi\\\\rvert}) holds for every x ∈ D n x\\\\in D_{n} , and later Kovács and Kwon [Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B 148 (2021), 84–124] characterised those 𝜑 such that there exists an inverse-closed ⟨ φ ⟩ \\\\langle\\\\varphi\\\\rangle -orbit, which generates D n D_{n} . We show that these two types of skew morphisms comprise all skew morphisms of D n D_{n} . The result is used to classify the finite groups with a complementary factorisation into a dihedral and a core-free cyclic subgroup. As another application, a formula for the total number of skew morphisms of D p t D_{p^{t}} is also derived for any prime 𝑝.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要有限群的偏态射是一个固定单位元的变量的置换,对于这个置换,存在一个整数值函数,使得对于A x,y \in A, φ∞(x) y = φ∞(x)∞(x)∞(x)∞(y) \varphi (xy)= \varphi (x) \varphi{ ^ }{\pi} (x)(y)。在本文中,我们限制了当A= dn A={D_n}, 2次方n 2n的二面体群。Wang et al.[二面体群的光滑倾斜态射,数学学报。]当代16(2019),2,527 - 547]在π (φ (x))≡π (x) (mod | φ |) \pi (\varphi (x)) \equiv\pi (x) \pmod{\lvert\varphi\rvert})对每个x∈dn x \in D_n{成立的条件下确定了所有的变量,后来Kovács和Kwon[二面体群的正则Cayley映射,J. Combin]。理论SerB 148(2021), 84-124]表征了那些变量,使得存在一个反封闭的⟨φ⟩}\langle\varphi\rangle -轨道,它产生了dn {D_n}。我们证明了这两种类型的倾斜态射包含了{dnd_n}的所有倾斜态射。利用这一结果将具有互补分解的有限群划分为二面体和无核循环子群。作为另一个应用,对于{任意素数𝑝,也导出了{pdtd_p ^}}t的偏态射总数的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A classification of skew morphisms of dihedral groups
Abstract A skew morphism of a finite group 𝐴 is a permutation 𝜑 of 𝐴 fixing the identity element and for which there is an integer-valued function 𝜋 on 𝐴 such that φ ⁢ ( x ⁢ y ) = φ ⁢ ( x ) ⁢ φ π ⁢ ( x ) ⁢ ( y ) \varphi(xy)=\varphi(x)\varphi^{\pi(x)}(y) for all x , y ∈ A x,y\in A . In this paper, we restrict ourselves to the case when A = D n A=D_{n} , the dihedral group of order 2 ⁢ n 2n . Wang et al. [Smooth skew morphisms of dihedral groups, Ars Math. Contemp. 16 (2019), 2, 527–547] determined all 𝜑 under the condition that π ( φ ( x ) ) ≡ π ( x ) ( mod | φ | ) ) \pi(\varphi(x))\equiv\pi(x)\pmod{\lvert\varphi\rvert}) holds for every x ∈ D n x\in D_{n} , and later Kovács and Kwon [Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B 148 (2021), 84–124] characterised those 𝜑 such that there exists an inverse-closed ⟨ φ ⟩ \langle\varphi\rangle -orbit, which generates D n D_{n} . We show that these two types of skew morphisms comprise all skew morphisms of D n D_{n} . The result is used to classify the finite groups with a complementary factorisation into a dihedral and a core-free cyclic subgroup. As another application, a formula for the total number of skew morphisms of D p t D_{p^{t}} is also derived for any prime 𝑝.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信