T. Chtioui, A. Hajjaji, S. Mabrouk, Abdenacer Makhlouf
{"title":"李三元系统上o算子的上同调与变形","authors":"T. Chtioui, A. Hajjaji, S. Mabrouk, Abdenacer Makhlouf","doi":"10.1063/5.0118911","DOIUrl":null,"url":null,"abstract":"In this paper, first, we provide a graded Lie algebra whose Maurer–Cartan elements characterize Lie triple system structures. Then, we use it to study cohomology and deformations of O-operators on Lie triple systems by constructing a Lie 3-algebra whose Maurer–Cartan elements are O-operators. Furthermore, we define a cohomology of an O-operator T as the Lie–Yamaguti cohomology of a certain Lie triple system induced by T with coefficients in a suitable representation. Therefore, we consider infinitesimal and formal deformations of O-operators from a cohomological viewpoint. Moreover, we provide relationships between O-operators on Lie algebras and associated Lie triple systems.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"49 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cohomologies and deformations of O-operators on Lie triple systems\",\"authors\":\"T. Chtioui, A. Hajjaji, S. Mabrouk, Abdenacer Makhlouf\",\"doi\":\"10.1063/5.0118911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first, we provide a graded Lie algebra whose Maurer–Cartan elements characterize Lie triple system structures. Then, we use it to study cohomology and deformations of O-operators on Lie triple systems by constructing a Lie 3-algebra whose Maurer–Cartan elements are O-operators. Furthermore, we define a cohomology of an O-operator T as the Lie–Yamaguti cohomology of a certain Lie triple system induced by T with coefficients in a suitable representation. Therefore, we consider infinitesimal and formal deformations of O-operators from a cohomological viewpoint. Moreover, we provide relationships between O-operators on Lie algebras and associated Lie triple systems.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0118911\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0118911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cohomologies and deformations of O-operators on Lie triple systems
In this paper, first, we provide a graded Lie algebra whose Maurer–Cartan elements characterize Lie triple system structures. Then, we use it to study cohomology and deformations of O-operators on Lie triple systems by constructing a Lie 3-algebra whose Maurer–Cartan elements are O-operators. Furthermore, we define a cohomology of an O-operator T as the Lie–Yamaguti cohomology of a certain Lie triple system induced by T with coefficients in a suitable representation. Therefore, we consider infinitesimal and formal deformations of O-operators from a cohomological viewpoint. Moreover, we provide relationships between O-operators on Lie algebras and associated Lie triple systems.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.