{"title":"Slater列表中两个公式的组合构造","authors":"Kagan Kursungöz","doi":"10.1142/s1793042120400114","DOIUrl":null,"url":null,"abstract":"We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \\geq 2$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combinatorial construction for two formulas in Slater’s list\",\"authors\":\"Kagan Kursungöz\",\"doi\":\"10.1142/s1793042120400114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \\\\geq 2$.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042120400114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042120400114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A combinatorial construction for two formulas in Slater’s list
We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \geq 2$.