Slater列表中两个公式的组合构造

Kagan Kursungöz
{"title":"Slater列表中两个公式的组合构造","authors":"Kagan Kursungöz","doi":"10.1142/s1793042120400114","DOIUrl":null,"url":null,"abstract":"We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \\geq 2$.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combinatorial construction for two formulas in Slater’s list\",\"authors\":\"Kagan Kursungöz\",\"doi\":\"10.1142/s1793042120400114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \\\\geq 2$.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042120400114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042120400114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了不同部分分区的包含-排除组合框架,得到了不同部分和非连续部分分区的备选生成函数。对于Rogers-Ramanujan恒等式,生成函数在Slater列表中产生两个公式。赫希霍恩也构造了同样的公式。我们还使用楼梯将分区分成$d-$不同的部分,用于任何$d \geq 2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combinatorial construction for two formulas in Slater’s list
We set up a combinatorial framework for inclusion-exclusion on the partitions into distinct parts to obtain an alternative generating function of partitions into distinct and non-consecutive parts. In connection with Rogers-Ramanujan identities, the generating function yields two formulas in Slater's list. The same formulas were constructed by Hirschhorn. We also use staircases to give alternative triple series for partitions into $d-$distinct parts for any $d \geq 2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信