基于改进粒子群优化算法和神经网络的人体跌倒检测

Chaowei Zhou, J. Xiao, Aimin Xiong, Caifeng Zhang
{"title":"基于改进粒子群优化算法和神经网络的人体跌倒检测","authors":"Chaowei Zhou, J. Xiao, Aimin Xiong, Caifeng Zhang","doi":"10.1109/cvidliccea56201.2022.9823997","DOIUrl":null,"url":null,"abstract":"As the global population continues to age, fall detection has become a common concern in the field of public safety. Fast and accurate detection of falling behaviors in surveillance videos and timely sending out help signals can effectively reduce the injuries caused by falls in the elderly. This paper proposes a hybrid algorithm based on an improved particle swarm optimization algorithm and a neural network for real-time fall detection in indoor environments. Human keypoints in video frames are first extracted using the alphapose model, and then the human keypoints are classified in real-time using an improved particle swarm optimization neural network model. Experimental results show that this method can effectively detect falling behaviors in indoor scenes.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human fall detection based on improved particle swarm optimization algorithm and neural network\",\"authors\":\"Chaowei Zhou, J. Xiao, Aimin Xiong, Caifeng Zhang\",\"doi\":\"10.1109/cvidliccea56201.2022.9823997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the global population continues to age, fall detection has become a common concern in the field of public safety. Fast and accurate detection of falling behaviors in surveillance videos and timely sending out help signals can effectively reduce the injuries caused by falls in the elderly. This paper proposes a hybrid algorithm based on an improved particle swarm optimization algorithm and a neural network for real-time fall detection in indoor environments. Human keypoints in video frames are first extracted using the alphapose model, and then the human keypoints are classified in real-time using an improved particle swarm optimization neural network model. Experimental results show that this method can effectively detect falling behaviors in indoor scenes.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9823997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9823997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着全球人口持续老龄化,跌倒检测已成为公共安全领域普遍关注的问题。在监控视频中快速准确地检测跌倒行为,及时发出帮助信号,可以有效减少老年人跌倒造成的伤害。本文提出了一种基于改进粒子群优化算法和神经网络的室内实时跌倒检测混合算法。首先利用alphapose模型提取视频帧中的人体关键点,然后利用改进的粒子群优化神经网络模型对视频帧中的人体关键点进行实时分类。实验结果表明,该方法可以有效地检测室内场景中的跌倒行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human fall detection based on improved particle swarm optimization algorithm and neural network
As the global population continues to age, fall detection has become a common concern in the field of public safety. Fast and accurate detection of falling behaviors in surveillance videos and timely sending out help signals can effectively reduce the injuries caused by falls in the elderly. This paper proposes a hybrid algorithm based on an improved particle swarm optimization algorithm and a neural network for real-time fall detection in indoor environments. Human keypoints in video frames are first extracted using the alphapose model, and then the human keypoints are classified in real-time using an improved particle swarm optimization neural network model. Experimental results show that this method can effectively detect falling behaviors in indoor scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信