肢体连续运动

I. Godage, D. Nanayakkara, D. Caldwell
{"title":"肢体连续运动","authors":"I. Godage, D. Nanayakkara, D. Caldwell","doi":"10.1109/IROS.2012.6385810","DOIUrl":null,"url":null,"abstract":"This paper presents the kinematics, dynamics, and experimental results for a novel quadruped robot using continuum limbs. We propose soft continuum limbs as a new paradigm for robotic locomotion in unstructured environments due to their potential to generate a wide array of locomotion behaviors ranging from walking, trotting, crawling, and propelling to whole arm grasping as a means of negotiating difficult obstacles. A straightforward method to derive the kinematics and dynamics for the proposed quadruped has been demonstrated through numerical simulations. Initial experiments on a prototype continuum quadruped demonstrate the ability to stand up from a flat-belly stance, absorb external disturbances such as maintaining stability after dropping from a height and after being perturbed by a collision, and crawling on flat and cluttered environments. Experiment results provide evidence that locomotion with soft continuum limbs are feasible and usable in unstructured environments for variety of applications.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"1 1","pages":"293-298"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Locomotion with continuum limbs\",\"authors\":\"I. Godage, D. Nanayakkara, D. Caldwell\",\"doi\":\"10.1109/IROS.2012.6385810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the kinematics, dynamics, and experimental results for a novel quadruped robot using continuum limbs. We propose soft continuum limbs as a new paradigm for robotic locomotion in unstructured environments due to their potential to generate a wide array of locomotion behaviors ranging from walking, trotting, crawling, and propelling to whole arm grasping as a means of negotiating difficult obstacles. A straightforward method to derive the kinematics and dynamics for the proposed quadruped has been demonstrated through numerical simulations. Initial experiments on a prototype continuum quadruped demonstrate the ability to stand up from a flat-belly stance, absorb external disturbances such as maintaining stability after dropping from a height and after being perturbed by a collision, and crawling on flat and cluttered environments. Experiment results provide evidence that locomotion with soft continuum limbs are feasible and usable in unstructured environments for variety of applications.\",\"PeriodicalId\":6358,\"journal\":{\"name\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"1 1\",\"pages\":\"293-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2012.6385810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

本文介绍了一种新型连续四肢四足机器人的运动学、动力学和实验结果。我们提出软连续肢作为机器人在非结构化环境中运动的新范式,因为它们有可能产生广泛的运动行为,从行走、小跑、爬行、推进到整个手臂抓取作为一种通过困难障碍物的手段。通过数值模拟证明了一种简单的方法来推导所提出的四足动物的运动学和动力学。在原型连续四足动物身上进行的初步实验表明,它能够从平腹的姿势站起来,吸收外部干扰,比如在从高处坠落和受到碰撞干扰后保持稳定,以及在平坦和杂乱的环境中爬行。实验结果证明,在非结构化环境下,柔性连续肢体运动是可行的,可用于各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locomotion with continuum limbs
This paper presents the kinematics, dynamics, and experimental results for a novel quadruped robot using continuum limbs. We propose soft continuum limbs as a new paradigm for robotic locomotion in unstructured environments due to their potential to generate a wide array of locomotion behaviors ranging from walking, trotting, crawling, and propelling to whole arm grasping as a means of negotiating difficult obstacles. A straightforward method to derive the kinematics and dynamics for the proposed quadruped has been demonstrated through numerical simulations. Initial experiments on a prototype continuum quadruped demonstrate the ability to stand up from a flat-belly stance, absorb external disturbances such as maintaining stability after dropping from a height and after being perturbed by a collision, and crawling on flat and cluttered environments. Experiment results provide evidence that locomotion with soft continuum limbs are feasible and usable in unstructured environments for variety of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信