{"title":"电力系统任务性能分析的线性隐式量化状态系统评价方法","authors":"N. Gholizadeh, Joseph M. Hood, R. Dougal","doi":"10.1177/15485129211061702","DOIUrl":null,"url":null,"abstract":"The Linear Implicit Quantized State System (LIQSS) method has been evaluated for suitability in modeling and simulation of long duration mission profiles of Naval power systems which are typically characterized by stiff, non-linear, differential algebraic equations. A reference electromechanical system consists of an electric machine connected to a torque source on the shaft end and to an electric grid at its electrical terminals. The system is highly non-linear and has widely varying rate constants; at a typical steady state operating point, the electrical and electromechanical time constants differ by three orders of magnitude—being 3.2 ms and 2.7 s respectively. Two important characteristics of the simulation—accuracy and computational intensity—both depend on quantization size of the system state variables. At a quantization size of about 1% of a variable’s maximum value, results from the LIQSS1 method differed by less than 1% from results computed by well-known continuous-system state-space methods. The computational efficiency of the LIQSS1 method increased logarithmically with increasing quantization size, without significant loss of accuracy, up to some particular quantization size, beyond which the error increased rapidly. For the particular system under study, a “sweet spot” was found at a particular quantum size that yielded both high computational efficiency and good accuracy.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of Linear Implicit Quantized State System method for analyzing mission performance of power systems\",\"authors\":\"N. Gholizadeh, Joseph M. Hood, R. Dougal\",\"doi\":\"10.1177/15485129211061702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Linear Implicit Quantized State System (LIQSS) method has been evaluated for suitability in modeling and simulation of long duration mission profiles of Naval power systems which are typically characterized by stiff, non-linear, differential algebraic equations. A reference electromechanical system consists of an electric machine connected to a torque source on the shaft end and to an electric grid at its electrical terminals. The system is highly non-linear and has widely varying rate constants; at a typical steady state operating point, the electrical and electromechanical time constants differ by three orders of magnitude—being 3.2 ms and 2.7 s respectively. Two important characteristics of the simulation—accuracy and computational intensity—both depend on quantization size of the system state variables. At a quantization size of about 1% of a variable’s maximum value, results from the LIQSS1 method differed by less than 1% from results computed by well-known continuous-system state-space methods. The computational efficiency of the LIQSS1 method increased logarithmically with increasing quantization size, without significant loss of accuracy, up to some particular quantization size, beyond which the error increased rapidly. For the particular system under study, a “sweet spot” was found at a particular quantum size that yielded both high computational efficiency and good accuracy.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211061702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211061702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of Linear Implicit Quantized State System method for analyzing mission performance of power systems
The Linear Implicit Quantized State System (LIQSS) method has been evaluated for suitability in modeling and simulation of long duration mission profiles of Naval power systems which are typically characterized by stiff, non-linear, differential algebraic equations. A reference electromechanical system consists of an electric machine connected to a torque source on the shaft end and to an electric grid at its electrical terminals. The system is highly non-linear and has widely varying rate constants; at a typical steady state operating point, the electrical and electromechanical time constants differ by three orders of magnitude—being 3.2 ms and 2.7 s respectively. Two important characteristics of the simulation—accuracy and computational intensity—both depend on quantization size of the system state variables. At a quantization size of about 1% of a variable’s maximum value, results from the LIQSS1 method differed by less than 1% from results computed by well-known continuous-system state-space methods. The computational efficiency of the LIQSS1 method increased logarithmically with increasing quantization size, without significant loss of accuracy, up to some particular quantization size, beyond which the error increased rapidly. For the particular system under study, a “sweet spot” was found at a particular quantum size that yielded both high computational efficiency and good accuracy.