斐波那契类型群的移位动力学

Pub Date : 2022-07-30 DOI:10.1515/jgth-2022-0003
Kirk McDermott
{"title":"斐波那契类型群的移位动力学","authors":"Kirk McDermott","doi":"10.1515/jgth-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract We study the shift dynamics of the groups G = G n ⁢ ( x 0 ⁢ x m ⁢ x k - 1 ) G=G_{n}(x_{0}x_{m}x_{k}^{-1}) of Fibonacci type introduced by Johnson and Mawdesley. The main result concerns the order of the shift automorphism of 𝐺 and determining whether it is an outer automorphism, and we find the latter occurs if and only if 𝐺 is not perfect. A result of Bogley provides that the aspherical presentations determine groups admitting a free shift action by Z n \\mathbb{Z}_{n} on the nonidentity elements of 𝐺, from which it follows that the shift is an outer automorphism of order 𝑛 when 𝐺 is nontrivial. The focus of this paper is therefore on the non-aspherical cases, which include for example the Fibonacci and Sieradski groups. With few exceptions, the fixed-point and freeness problems for the shift automorphism are solved, in some cases using computational and topological methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shift dynamics of the groups of Fibonacci type\",\"authors\":\"Kirk McDermott\",\"doi\":\"10.1515/jgth-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the shift dynamics of the groups G = G n ⁢ ( x 0 ⁢ x m ⁢ x k - 1 ) G=G_{n}(x_{0}x_{m}x_{k}^{-1}) of Fibonacci type introduced by Johnson and Mawdesley. The main result concerns the order of the shift automorphism of 𝐺 and determining whether it is an outer automorphism, and we find the latter occurs if and only if 𝐺 is not perfect. A result of Bogley provides that the aspherical presentations determine groups admitting a free shift action by Z n \\\\mathbb{Z}_{n} on the nonidentity elements of 𝐺, from which it follows that the shift is an outer automorphism of order 𝑛 when 𝐺 is nontrivial. The focus of this paper is therefore on the non-aspherical cases, which include for example the Fibonacci and Sieradski groups. With few exceptions, the fixed-point and freeness problems for the shift automorphism are solved, in some cases using computational and topological methods.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了Johnson和Mawdesley引入的Fibonacci型群G= gn¹(x 0¹x m¹x k -1) G=G_{n}(x_{0}x_{m}x_{k}^{-1})的位移动力学。主要结果涉及到𝐺的移位自同构的阶数以及确定它是否为外自同构,并且我们发现当且仅当𝐺不完全时才存在外自同构。Bogley的结果给出了非球面表示决定了在𝐺的非恒等元素上有Z n \mathbb{Z}_{n}自由移位的群,由此得出当𝐺是非平凡时,移位是一个𝑛阶的外自同构。因此,本文的重点是非球面的情况,包括斐波那契群和西拉德斯基群。除了少数例外,移位自同构的不动点和自由问题都得到了解决,在某些情况下使用计算和拓扑方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Shift dynamics of the groups of Fibonacci type
Abstract We study the shift dynamics of the groups G = G n ⁢ ( x 0 ⁢ x m ⁢ x k - 1 ) G=G_{n}(x_{0}x_{m}x_{k}^{-1}) of Fibonacci type introduced by Johnson and Mawdesley. The main result concerns the order of the shift automorphism of 𝐺 and determining whether it is an outer automorphism, and we find the latter occurs if and only if 𝐺 is not perfect. A result of Bogley provides that the aspherical presentations determine groups admitting a free shift action by Z n \mathbb{Z}_{n} on the nonidentity elements of 𝐺, from which it follows that the shift is an outer automorphism of order 𝑛 when 𝐺 is nontrivial. The focus of this paper is therefore on the non-aspherical cases, which include for example the Fibonacci and Sieradski groups. With few exceptions, the fixed-point and freeness problems for the shift automorphism are solved, in some cases using computational and topological methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信