关于∇-凸函数相关结果的若干注释

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
Asif R Khan, F. Mehmood, F. Nawaz, Aamna Nazir
{"title":"关于∇-凸函数相关结果的若干注释","authors":"Asif R Khan, F. Mehmood, F. Nawaz, Aamna Nazir","doi":"10.5614/J.FUND.MATH.SCI.2021.53.1.5","DOIUrl":null,"url":null,"abstract":"In present article we give some general identities of Popoviciu type for discrete case for sums PM i=1PN j=1 pijf(yi,zj) andPM i=1PN j=1 pijaij for two dimension using higher order ∇ divided dii¬€erence, and for integral case RRP(y,z)f(y,z)dydz are deduced by dii¬€erent methods for higher order dii¬€erentiable function of two variables and these identities would be generalization of several established results.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"1 1","pages":"67-85"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Remarks on Results Related to ∇-Convex Function\",\"authors\":\"Asif R Khan, F. Mehmood, F. Nawaz, Aamna Nazir\",\"doi\":\"10.5614/J.FUND.MATH.SCI.2021.53.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present article we give some general identities of Popoviciu type for discrete case for sums PM i=1PN j=1 pijf(yi,zj) andPM i=1PN j=1 pijaij for two dimension using higher order ∇ divided dii¬€erence, and for integral case RRP(y,z)f(y,z)dydz are deduced by dii¬€erent methods for higher order dii¬€erentiable function of two variables and these identities would be generalization of several established results.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"1 1\",\"pages\":\"67-85\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/J.FUND.MATH.SCI.2021.53.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/J.FUND.MATH.SCI.2021.53.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文利用高阶可分向量,给出了二维和PM i=1PN j=1 pijf(yi,zj)和PM i=1PN j=1 pijj离散情况下的一些一般的Popoviciu型恒等式,并利用双变量高阶可分函数的双事件方法,导出了积分情况下的RRP(y,z)f(y,z)dydz,这些恒等式是已有结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Remarks on Results Related to ∇-Convex Function
In present article we give some general identities of Popoviciu type for discrete case for sums PM i=1PN j=1 pijf(yi,zj) andPM i=1PN j=1 pijaij for two dimension using higher order ∇ divided dii¬€erence, and for integral case RRP(y,z)f(y,z)dydz are deduced by dii¬€erent methods for higher order dii¬€erentiable function of two variables and these identities would be generalization of several established results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信