基于CNN轻量级架构的恶意软件分类:MalShuffleNet

Lin Qiu, Shuo Wang, Jian Wang, Yifei Wang, Wei Huang
{"title":"基于CNN轻量级架构的恶意软件分类:MalShuffleNet","authors":"Lin Qiu, Shuo Wang, Jian Wang, Yifei Wang, Wei Huang","doi":"10.1109/cvidliccea56201.2022.9824719","DOIUrl":null,"url":null,"abstract":"Traditional methods of malware detection have difficulty in detecting massive malware variants. Malware detection based on malware visualization has been proved an effective method for identifying unknown malware variants. In order to improve the accuracy and reduce the detection time of above methods, a novel method for malware classification in a light-weight CNN architecture named MalshuffleNet is proposed. The model is customized based on ShuffleNet V2 by adjusting the numbers of the fully connected layer for adopting to malware classification. Empirical results on Malimg dataset indicate that our model achieves 99.03% in accuracy, and identify an unknown malware only taking 5.3 milliseconds on average.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"137 1","pages":"1047-1050"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Malware Classification based on a Light-weight Architecture of CNN: MalShuffleNet\",\"authors\":\"Lin Qiu, Shuo Wang, Jian Wang, Yifei Wang, Wei Huang\",\"doi\":\"10.1109/cvidliccea56201.2022.9824719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional methods of malware detection have difficulty in detecting massive malware variants. Malware detection based on malware visualization has been proved an effective method for identifying unknown malware variants. In order to improve the accuracy and reduce the detection time of above methods, a novel method for malware classification in a light-weight CNN architecture named MalshuffleNet is proposed. The model is customized based on ShuffleNet V2 by adjusting the numbers of the fully connected layer for adopting to malware classification. Empirical results on Malimg dataset indicate that our model achieves 99.03% in accuracy, and identify an unknown malware only taking 5.3 milliseconds on average.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"137 1\",\"pages\":\"1047-1050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的恶意软件检测方法难以检测出大量的恶意软件变体。基于恶意软件可视化的恶意软件检测已被证明是识别未知恶意软件变体的有效方法。为了提高上述方法的准确率和减少检测时间,提出了一种基于轻量级CNN架构的恶意软件分类新方法MalshuffleNet。该模型是在ShuffleNet V2的基础上,通过调整全连接层的数量来定制的,以适应恶意软件的分类。在Malimg数据集上的实验结果表明,该模型的准确率达到99.03%,识别未知恶意软件的平均时间仅为5.3毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware Classification based on a Light-weight Architecture of CNN: MalShuffleNet
Traditional methods of malware detection have difficulty in detecting massive malware variants. Malware detection based on malware visualization has been proved an effective method for identifying unknown malware variants. In order to improve the accuracy and reduce the detection time of above methods, a novel method for malware classification in a light-weight CNN architecture named MalshuffleNet is proposed. The model is customized based on ShuffleNet V2 by adjusting the numbers of the fully connected layer for adopting to malware classification. Empirical results on Malimg dataset indicate that our model achieves 99.03% in accuracy, and identify an unknown malware only taking 5.3 milliseconds on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信