Hassan Fawaz, Omar Houidi, D. Zeghlache, Julien Lesca, Pham Tran Anh Quang, Jérémie Leguay, P. Medagliani
{"title":"Graph Convolutional Reinforcement Learning for Load Balancing and Smart Queuing","authors":"Hassan Fawaz, Omar Houidi, D. Zeghlache, Julien Lesca, Pham Tran Anh Quang, Jérémie Leguay, P. Medagliani","doi":"10.23919/IFIPNetworking57963.2023.10186430","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph convolutional deep reinforcement learning framework for both smart load balancing and queuing agents in a collaborative environment. We aim to balance traffic loads on different paths, and then control how packets belonging to different flow classes are dequeued at network nodes. Our objective is twofold: first to improve general network performance in terms of throughput and end-to-end delay, and second, to ensure meeting stringent service level agreements for a set of classified network flows. Our proposals use attention mechanisms to extract relevant features from local observations and neighborhood policies to limit the overhead of inter-agent communications. We assess our algorithms in a Mininet testbed and show that they outperform classic approaches to load balancing and smart queuing in terms of throughput and end-to-end delay.","PeriodicalId":31737,"journal":{"name":"Edutech","volume":"200 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edutech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IFIPNetworking57963.2023.10186430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Convolutional Reinforcement Learning for Load Balancing and Smart Queuing
In this paper, we propose a graph convolutional deep reinforcement learning framework for both smart load balancing and queuing agents in a collaborative environment. We aim to balance traffic loads on different paths, and then control how packets belonging to different flow classes are dequeued at network nodes. Our objective is twofold: first to improve general network performance in terms of throughput and end-to-end delay, and second, to ensure meeting stringent service level agreements for a set of classified network flows. Our proposals use attention mechanisms to extract relevant features from local observations and neighborhood policies to limit the overhead of inter-agent communications. We assess our algorithms in a Mininet testbed and show that they outperform classic approaches to load balancing and smart queuing in terms of throughput and end-to-end delay.