Hassan Fawaz, Omar Houidi, D. Zeghlache, Julien Lesca, Pham Tran Anh Quang, Jérémie Leguay, P. Medagliani
{"title":"Graph Convolutional Reinforcement Learning for Load Balancing and Smart Queuing","authors":"Hassan Fawaz, Omar Houidi, D. Zeghlache, Julien Lesca, Pham Tran Anh Quang, Jérémie Leguay, P. Medagliani","doi":"10.23919/IFIPNetworking57963.2023.10186430","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph convolutional deep reinforcement learning framework for both smart load balancing and queuing agents in a collaborative environment. We aim to balance traffic loads on different paths, and then control how packets belonging to different flow classes are dequeued at network nodes. Our objective is twofold: first to improve general network performance in terms of throughput and end-to-end delay, and second, to ensure meeting stringent service level agreements for a set of classified network flows. Our proposals use attention mechanisms to extract relevant features from local observations and neighborhood policies to limit the overhead of inter-agent communications. We assess our algorithms in a Mininet testbed and show that they outperform classic approaches to load balancing and smart queuing in terms of throughput and end-to-end delay.","PeriodicalId":31737,"journal":{"name":"Edutech","volume":"200 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edutech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IFIPNetworking57963.2023.10186430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个用于协作环境中的智能负载平衡和排队代理的图卷积深度强化学习框架。我们的目标是平衡不同路径上的流量负载,然后控制属于不同流类的数据包如何在网络节点上脱队。我们的目标有两个:首先,提高吞吐量和端到端延迟方面的一般网络性能;其次,确保满足一组分类网络流的严格服务水平协议。我们的建议使用注意机制从局部观察和邻域策略中提取相关特征,以限制代理间通信的开销。我们在Mininet测试平台上评估了我们的算法,并表明它们在吞吐量和端到端延迟方面优于负载平衡和智能队列的经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Convolutional Reinforcement Learning for Load Balancing and Smart Queuing
In this paper, we propose a graph convolutional deep reinforcement learning framework for both smart load balancing and queuing agents in a collaborative environment. We aim to balance traffic loads on different paths, and then control how packets belonging to different flow classes are dequeued at network nodes. Our objective is twofold: first to improve general network performance in terms of throughput and end-to-end delay, and second, to ensure meeting stringent service level agreements for a set of classified network flows. Our proposals use attention mechanisms to extract relevant features from local observations and neighborhood policies to limit the overhead of inter-agent communications. We assess our algorithms in a Mininet testbed and show that they outperform classic approaches to load balancing and smart queuing in terms of throughput and end-to-end delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信