不带XlogX条件的高尔顿-沃森树的均匀测度的豪斯多夫维数

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
EF Elie Aidékon
{"title":"不带XlogX条件的高尔顿-沃森树的均匀测度的豪斯多夫维数","authors":"EF Elie Aidékon","doi":"10.1214/19-aihp1031","DOIUrl":null,"url":null,"abstract":"We consider a Galton–Watson tree with offspring distribution ν of finite mean. The uniform measure on the boundary of the tree is obtained by putting mass 1 on each vertex of the n-th generation and taking the limit n → ∞. In the case E[ν log(ν)] < ∞, this measure has been well studied, and it is known that the Hausdorff dimension of the measure is equal to log(m) ([3], [14]). When E[ν log(ν)] = ∞, we show that the dimension drops to 0. This answers a question of Lyons, Pemantle and Peres [15] .","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"10 1","pages":"2301-2306"},"PeriodicalIF":1.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff dimension of the uniform measure of Galton–Watson trees without the XlogX condition\",\"authors\":\"EF Elie Aidékon\",\"doi\":\"10.1214/19-aihp1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Galton–Watson tree with offspring distribution ν of finite mean. The uniform measure on the boundary of the tree is obtained by putting mass 1 on each vertex of the n-th generation and taking the limit n → ∞. In the case E[ν log(ν)] < ∞, this measure has been well studied, and it is known that the Hausdorff dimension of the measure is equal to log(m) ([3], [14]). When E[ν log(ν)] = ∞, we show that the dimension drops to 0. This answers a question of Lyons, Pemantle and Peres [15] .\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"10 1\",\"pages\":\"2301-2306\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aihp1031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aihp1031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有有限均值子代分布ν的高尔顿-沃森树。将质量1放在第n代的每个顶点上,取极限n→∞,得到树边界上的一致测度。在E[ν log(ν)] <∞的情况下,这个测度已经得到了很好的研究,已知该测度的Hausdorff维数等于log(m)([3],[14])。当E[ν log(ν)] =∞时,我们表示维数降为0。这就回答了Lyons、Pemantle和Peres[15]提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff dimension of the uniform measure of Galton–Watson trees without the XlogX condition
We consider a Galton–Watson tree with offspring distribution ν of finite mean. The uniform measure on the boundary of the tree is obtained by putting mass 1 on each vertex of the n-th generation and taking the limit n → ∞. In the case E[ν log(ν)] < ∞, this measure has been well studied, and it is known that the Hausdorff dimension of the measure is equal to log(m) ([3], [14]). When E[ν log(ν)] = ∞, we show that the dimension drops to 0. This answers a question of Lyons, Pemantle and Peres [15] .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信