ITO/Sn复合薄膜非线性光学特性的厚度依赖性

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Boyang Nan, R. Hong, Chunxian Tao, Qi Wang, Hui Lin, Zhaoxia Han, Dawei Zhang
{"title":"ITO/Sn复合薄膜非线性光学特性的厚度依赖性","authors":"Boyang Nan, R. Hong, Chunxian Tao, Qi Wang, Hui Lin, Zhaoxia Han, Dawei Zhang","doi":"10.3788/col202321.081902","DOIUrl":null,"url":null,"abstract":"In this study, a batch of indium tin oxide (ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam. The crystalline structure, surface shape, and optical characterization of the films were researched using an X-ray diffractometer, an atomic force microscope, a UV-Vis-NIR dual-beam spectrophotometer, and an open-hole Z-scan system. By varying the relative thickness ratio of the ITO/Sn bilayer film, tunable nonlinear optical properties were achieved. The nonlinear saturation absorption coefficient β maximum of the ITO/Sn composites is − 10.5 × 10 − 7 cm = W, approximately 21 and 1.72 times more enhanced compared to monolayer ITO and Sn, respectively. Moreover, the improvement of the sample nonlinear performance was verified using finite-difference in temporal domain simulations.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"346 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thickness dependency of nonlinear optical properties in ITO/Sn composite films\",\"authors\":\"Boyang Nan, R. Hong, Chunxian Tao, Qi Wang, Hui Lin, Zhaoxia Han, Dawei Zhang\",\"doi\":\"10.3788/col202321.081902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a batch of indium tin oxide (ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam. The crystalline structure, surface shape, and optical characterization of the films were researched using an X-ray diffractometer, an atomic force microscope, a UV-Vis-NIR dual-beam spectrophotometer, and an open-hole Z-scan system. By varying the relative thickness ratio of the ITO/Sn bilayer film, tunable nonlinear optical properties were achieved. The nonlinear saturation absorption coefficient β maximum of the ITO/Sn composites is − 10.5 × 10 − 7 cm = W, approximately 21 and 1.72 times more enhanced compared to monolayer ITO and Sn, respectively. Moreover, the improvement of the sample nonlinear performance was verified using finite-difference in temporal domain simulations.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"346 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.081902\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.081902","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用电子束热蒸发原理制备了一批不同配比的氧化铟锡/锡复合材料。利用x射线衍射仪、原子力显微镜、紫外-可见-近红外双光束分光光度计和开孔z扫描系统对薄膜的晶体结构、表面形状和光学特性进行了研究。通过改变ITO/Sn双层膜的相对厚度比,实现了可调谐的非线性光学特性。ITO/Sn复合材料的非线性饱和吸收系数β最大值为- 10.5 × 10 - 7 cm = W,分别是单层ITO和单层Sn的21倍和1.72倍。通过时域有限差分仿真验证了该方法对样本非线性性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thickness dependency of nonlinear optical properties in ITO/Sn composite films
In this study, a batch of indium tin oxide (ITO)/Sn composites with different ratios was obtained based on the principle of thermal evaporation by an electron beam. The crystalline structure, surface shape, and optical characterization of the films were researched using an X-ray diffractometer, an atomic force microscope, a UV-Vis-NIR dual-beam spectrophotometer, and an open-hole Z-scan system. By varying the relative thickness ratio of the ITO/Sn bilayer film, tunable nonlinear optical properties were achieved. The nonlinear saturation absorption coefficient β maximum of the ITO/Sn composites is − 10.5 × 10 − 7 cm = W, approximately 21 and 1.72 times more enhanced compared to monolayer ITO and Sn, respectively. Moreover, the improvement of the sample nonlinear performance was verified using finite-difference in temporal domain simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信