固体脂质纳米颗粒作为辛酸载体的药理学参数评价

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stefano Russo, Giuliana Greco, M. Sarpietro
{"title":"固体脂质纳米颗粒作为辛酸载体的药理学参数评价","authors":"Stefano Russo, Giuliana Greco, M. Sarpietro","doi":"10.3390/micro3020034","DOIUrl":null,"url":null,"abstract":"Sinapic acid, 3,5-dimethoxyl-4-hydroxycinnamic acid, belonging to the class of hydroxycinnamic acids, shows antioxidant, anti-inflammatory, anticancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, antidiabetic, anxiolytic, and antibacterial activity. The aim of this work was to incorporate sinapic acid into solid lipid nanoparticles in order to improve its bioavailability. SLNs were prepared using the hot high-speed homogenization method. The pharmaco-technological properties and thermotropic profile of SLNs encapsulated with sinapic acid, as well as their interaction with biomembrane models, were evaluated. SLNs showed promising physicochemical properties and encapsulation efficiency, as well as a desirable release profile; moreover, they facilitated the interaction of sinapic acid with a biomembrane model made of multilamellar vesicles. In conclusion, this formulation can be used in further studies to assess its suitability to improve sinapic acid activity.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Pharmaco-Technological Parameters of Solid Lipid Nanoparticles as Carriers for Sinapic Acid\",\"authors\":\"Stefano Russo, Giuliana Greco, M. Sarpietro\",\"doi\":\"10.3390/micro3020034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sinapic acid, 3,5-dimethoxyl-4-hydroxycinnamic acid, belonging to the class of hydroxycinnamic acids, shows antioxidant, anti-inflammatory, anticancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, antidiabetic, anxiolytic, and antibacterial activity. The aim of this work was to incorporate sinapic acid into solid lipid nanoparticles in order to improve its bioavailability. SLNs were prepared using the hot high-speed homogenization method. The pharmaco-technological properties and thermotropic profile of SLNs encapsulated with sinapic acid, as well as their interaction with biomembrane models, were evaluated. SLNs showed promising physicochemical properties and encapsulation efficiency, as well as a desirable release profile; moreover, they facilitated the interaction of sinapic acid with a biomembrane model made of multilamellar vesicles. In conclusion, this formulation can be used in further studies to assess its suitability to improve sinapic acid activity.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3020034\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Sinapic acid, 3,5-二甲氧基-4-羟基肉桂酸,属于羟基肉桂酸类,具有抗氧化、抗炎、抗癌、保肝、保心、保肾、保神经、抗糖尿病、抗焦虑和抗菌活性。本研究的目的是将辛酸掺入固体脂质纳米颗粒中,以提高其生物利用度。采用高温高速均质法制备了sln。研究了sinapic酸包膜sln的药理学性能和热致性,以及它们与生物膜模型的相互作用。sln具有良好的理化性能、包封效率和良好的释放特性;此外,它们促进了辛酸与由多层囊泡组成的生物膜模型的相互作用。综上所述,该配方可用于进一步的研究,以评估其提高辛酸活性的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Pharmaco-Technological Parameters of Solid Lipid Nanoparticles as Carriers for Sinapic Acid
Sinapic acid, 3,5-dimethoxyl-4-hydroxycinnamic acid, belonging to the class of hydroxycinnamic acids, shows antioxidant, anti-inflammatory, anticancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, antidiabetic, anxiolytic, and antibacterial activity. The aim of this work was to incorporate sinapic acid into solid lipid nanoparticles in order to improve its bioavailability. SLNs were prepared using the hot high-speed homogenization method. The pharmaco-technological properties and thermotropic profile of SLNs encapsulated with sinapic acid, as well as their interaction with biomembrane models, were evaluated. SLNs showed promising physicochemical properties and encapsulation efficiency, as well as a desirable release profile; moreover, they facilitated the interaction of sinapic acid with a biomembrane model made of multilamellar vesicles. In conclusion, this formulation can be used in further studies to assess its suitability to improve sinapic acid activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信