任何高维正交基都均匀分布在球面上

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghí
{"title":"任何高维正交基都均匀分布在球面上","authors":"S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghí","doi":"10.1214/15-AIHP732","DOIUrl":null,"url":null,"abstract":"Let X be a real or complex Hilbert space of finite but large dimension d, let S(X) denote the unit sphere of X, and let u denote the normalized uniform measure on S(X). For a finite subset B of S(X), we may test whether it is approximately uniformly distributed over the sphere by choosing a partition A1,...,Am of S(X) and checking whether the fraction of points in B that lie in Ak is close to u(Ak) for each k = 1,...,m. We show that if B is any orthonormal basis of X and m is not too large, then, if we randomize the test by applying a random rotation to the sets A1,...,Am, B will pass the random test with probability close to 1. This statement is related to, but not entailed by, the law of large numbers. An application of this fact in quantum statistical mechanics is briefly described.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"155 1","pages":"701-717"},"PeriodicalIF":1.2000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Any orthonormal basis in high dimension is uniformly distributed over the sphere\",\"authors\":\"S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghí\",\"doi\":\"10.1214/15-AIHP732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a real or complex Hilbert space of finite but large dimension d, let S(X) denote the unit sphere of X, and let u denote the normalized uniform measure on S(X). For a finite subset B of S(X), we may test whether it is approximately uniformly distributed over the sphere by choosing a partition A1,...,Am of S(X) and checking whether the fraction of points in B that lie in Ak is close to u(Ak) for each k = 1,...,m. We show that if B is any orthonormal basis of X and m is not too large, then, if we randomize the test by applying a random rotation to the sets A1,...,Am, B will pass the random test with probability close to 1. This statement is related to, but not entailed by, the law of large numbers. An application of this fact in quantum statistical mechanics is briefly described.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"155 1\",\"pages\":\"701-717\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP732\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

设X是一个大维有限的实数或复希尔伯特空间d,设S(X)表示X的单位球,设u表示S(X)上的归一化一致测度。对于S(X)的有限子集B,我们可以通过选择划分A1,…来检验它是否近似均匀分布在球上。,Am (S(X)),并检查对于每个k = 1,…,m, B中位于Ak中的点的分数是否接近u(Ak)。我们证明,如果B是X的任意正交基,m不太大,那么,如果我们通过对集合A1,…, a, B通过随机测试的概率接近于1。这个说法与大数定律有关,但不包含在大数定律中。简述了这一事实在量子统计力学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Any orthonormal basis in high dimension is uniformly distributed over the sphere
Let X be a real or complex Hilbert space of finite but large dimension d, let S(X) denote the unit sphere of X, and let u denote the normalized uniform measure on S(X). For a finite subset B of S(X), we may test whether it is approximately uniformly distributed over the sphere by choosing a partition A1,...,Am of S(X) and checking whether the fraction of points in B that lie in Ak is close to u(Ak) for each k = 1,...,m. We show that if B is any orthonormal basis of X and m is not too large, then, if we randomize the test by applying a random rotation to the sets A1,...,Am, B will pass the random test with probability close to 1. This statement is related to, but not entailed by, the law of large numbers. An application of this fact in quantum statistical mechanics is briefly described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信