用微热阶段表征相变层热性能

S. Fong, R. Jeyasingh, M. Asheghi, K. Goodson, H. Wong
{"title":"用微热阶段表征相变层热性能","authors":"S. Fong, R. Jeyasingh, M. Asheghi, K. Goodson, H. Wong","doi":"10.1109/ITHERM.2014.6892355","DOIUrl":null,"url":null,"abstract":"Recent progress using a micro-thermal stage (MTS) allowed the control the temperature of microstructures with sub-μs time scales. This approach was applied to phase-change memory (PCM) cells to measure thermal material and device properties. In this work, we use the change in MTS thermal resistance to predict changes in the thermal conductivity or thickness of the nearby phase-change layer (PCL). More generally, we show that the MTS can be placed in-situ of a complicated system to measure the thermal properties of a single changing layer. Electrical measurements of the MTS are performed on several different structures with different PCL thicknesses including 35, 70, and 100 nm thick Ge2Sb2Te5 (GST) films, a different phase-change material, and no PCL. Simulations establish the expected relationship between the MTS temperature for different input PCL thermal properties. The simulation approach is then scaled to match the experimental data and predicts the temperature in the PCL for different PCL thermal properties. Additionally, an analytical thermal circuit model is developed to describe the thermal profile of the system. The calibrated simulation and analytical models are thus able to determine thermal properties of the buried PCL by making purely electrical measurements of the MTS.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"128 11 1","pages":"744-749"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization of phase-change layer thermal properties using a micro-thermal stage\",\"authors\":\"S. Fong, R. Jeyasingh, M. Asheghi, K. Goodson, H. Wong\",\"doi\":\"10.1109/ITHERM.2014.6892355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress using a micro-thermal stage (MTS) allowed the control the temperature of microstructures with sub-μs time scales. This approach was applied to phase-change memory (PCM) cells to measure thermal material and device properties. In this work, we use the change in MTS thermal resistance to predict changes in the thermal conductivity or thickness of the nearby phase-change layer (PCL). More generally, we show that the MTS can be placed in-situ of a complicated system to measure the thermal properties of a single changing layer. Electrical measurements of the MTS are performed on several different structures with different PCL thicknesses including 35, 70, and 100 nm thick Ge2Sb2Te5 (GST) films, a different phase-change material, and no PCL. Simulations establish the expected relationship between the MTS temperature for different input PCL thermal properties. The simulation approach is then scaled to match the experimental data and predicts the temperature in the PCL for different PCL thermal properties. Additionally, an analytical thermal circuit model is developed to describe the thermal profile of the system. The calibrated simulation and analytical models are thus able to determine thermal properties of the buried PCL by making purely electrical measurements of the MTS.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"128 11 1\",\"pages\":\"744-749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近的进展是利用微热阶段(MTS)在亚μs时间尺度上控制微结构的温度。该方法被应用于相变存储器(PCM)电池,以测量热材料和器件的性能。在这项工作中,我们使用MTS热阻的变化来预测附近相变层(PCL)的导热系数或厚度的变化。更一般地说,我们表明MTS可以放置在一个复杂系统的原位,以测量单个变化层的热性能。MTS的电测量是在几种不同的结构上进行的,这些结构具有不同的PCL厚度,包括35、70和100 nm厚的Ge2Sb2Te5 (GST)薄膜,一种不同的相变材料,以及没有PCL。仿真建立了不同输入PCL热性能下MTS温度之间的预期关系。然后对模拟方法进行缩放以匹配实验数据,并预测不同PCL热性能下PCL内的温度。此外,还建立了一个分析热电路模型来描述系统的热分布。因此,校准的模拟和分析模型能够通过对MTS进行纯电测量来确定埋地PCL的热特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of phase-change layer thermal properties using a micro-thermal stage
Recent progress using a micro-thermal stage (MTS) allowed the control the temperature of microstructures with sub-μs time scales. This approach was applied to phase-change memory (PCM) cells to measure thermal material and device properties. In this work, we use the change in MTS thermal resistance to predict changes in the thermal conductivity or thickness of the nearby phase-change layer (PCL). More generally, we show that the MTS can be placed in-situ of a complicated system to measure the thermal properties of a single changing layer. Electrical measurements of the MTS are performed on several different structures with different PCL thicknesses including 35, 70, and 100 nm thick Ge2Sb2Te5 (GST) films, a different phase-change material, and no PCL. Simulations establish the expected relationship between the MTS temperature for different input PCL thermal properties. The simulation approach is then scaled to match the experimental data and predicts the temperature in the PCL for different PCL thermal properties. Additionally, an analytical thermal circuit model is developed to describe the thermal profile of the system. The calibrated simulation and analytical models are thus able to determine thermal properties of the buried PCL by making purely electrical measurements of the MTS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信