使用无监督特征学习的睡眠阶段分类

Martin Längkvist, L. Karlsson, A. Loutfi
{"title":"使用无监督特征学习的睡眠阶段分类","authors":"Martin Längkvist, L. Karlsson, A. Loutfi","doi":"10.1155/2012/107046","DOIUrl":null,"url":null,"abstract":"Most attempts at training computers for the difficult and time-consuming task of sleep stage classification involve a feature extraction step. Due to the complexity of multimodal sleep data, the size of the feature space can grow to the extent that it is also necessary to include a feature selection step. In this paper, we propose the use of an unsupervised feature learning architecture called deep belief nets (DBNs) and show how to apply it to sleep data in order to eliminate the use of handmade features. Using a postprocessing step of hidden Markov model (HMM) to accurately capture sleep stage switching, we compare our results to a feature-based approach. A study of anomaly detection with the application to home environment data collection is also presented. The results using raw data with a deep architecture, such as the DBN, were comparable to a feature-based approach when validated on clinical datasets.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"129 1","pages":"107046:1-107046:9"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"254","resultStr":"{\"title\":\"Sleep Stage Classification Using Unsupervised Feature Learning\",\"authors\":\"Martin Längkvist, L. Karlsson, A. Loutfi\",\"doi\":\"10.1155/2012/107046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most attempts at training computers for the difficult and time-consuming task of sleep stage classification involve a feature extraction step. Due to the complexity of multimodal sleep data, the size of the feature space can grow to the extent that it is also necessary to include a feature selection step. In this paper, we propose the use of an unsupervised feature learning architecture called deep belief nets (DBNs) and show how to apply it to sleep data in order to eliminate the use of handmade features. Using a postprocessing step of hidden Markov model (HMM) to accurately capture sleep stage switching, we compare our results to a feature-based approach. A study of anomaly detection with the application to home environment data collection is also presented. The results using raw data with a deep architecture, such as the DBN, were comparable to a feature-based approach when validated on clinical datasets.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"129 1\",\"pages\":\"107046:1-107046:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"254\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/107046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/107046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 254

摘要

大多数训练计算机完成困难且耗时的睡眠阶段分类任务的尝试都包含一个特征提取步骤。由于多模态睡眠数据的复杂性,特征空间的大小可能会增长到还需要包含特征选择步骤的程度。在本文中,我们提出使用一种称为深度信念网络(dbn)的无监督特征学习架构,并展示了如何将其应用于睡眠数据,以消除手工特征的使用。使用隐马尔可夫模型(HMM)的后处理步骤来准确捕获睡眠阶段切换,我们将我们的结果与基于特征的方法进行比较。对异常检测技术在家庭环境数据采集中的应用进行了研究。当在临床数据集上验证时,使用具有深度架构的原始数据(如DBN)的结果与基于特征的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sleep Stage Classification Using Unsupervised Feature Learning
Most attempts at training computers for the difficult and time-consuming task of sleep stage classification involve a feature extraction step. Due to the complexity of multimodal sleep data, the size of the feature space can grow to the extent that it is also necessary to include a feature selection step. In this paper, we propose the use of an unsupervised feature learning architecture called deep belief nets (DBNs) and show how to apply it to sleep data in order to eliminate the use of handmade features. Using a postprocessing step of hidden Markov model (HMM) to accurately capture sleep stage switching, we compare our results to a feature-based approach. A study of anomaly detection with the application to home environment data collection is also presented. The results using raw data with a deep architecture, such as the DBN, were comparable to a feature-based approach when validated on clinical datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信