{"title":"电催化和电化学传感器用导电MOFs","authors":"Kang-Kai Liu , Zheng Meng , Yu Fang , Hai-Long Jiang","doi":"10.1016/j.esci.2023.100133","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional conductive metal–organic frameworks (2D-cMOFs) are a class of 2D layered MOFs with excellent electrical conductivity and other electronic properties. In recent years, their porous structure and dense active sites have been widely used in electrocatalysis and electrochemical sensing. The large electron delocalization domains generated by an extended π-conjugated framework through the covalent bonding between metal and organic ligand endow them with unique high conductivity. Yet despite a few promising applications, current research rarely addresses their “structure–property relationship.” This review discusses the rational design of 2D-cMOFs with extraordinary electrochemical performance. We introduce several representative 2D-cMOFs and describe their applications, focusing on electrochemical catalysis and small molecule detection. By correlating the performance of the current materials in these applications and the corresponding mechanisms, we aim to uncover the key structural features that lead to their engineered properties and functions.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100133"},"PeriodicalIF":42.9000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723000575/pdfft?md5=dc5af580b7235796ee4af904da6dcac1&pid=1-s2.0-S2667141723000575-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Conductive MOFs for electrocatalysis and electrochemical sensor\",\"authors\":\"Kang-Kai Liu , Zheng Meng , Yu Fang , Hai-Long Jiang\",\"doi\":\"10.1016/j.esci.2023.100133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional conductive metal–organic frameworks (2D-cMOFs) are a class of 2D layered MOFs with excellent electrical conductivity and other electronic properties. In recent years, their porous structure and dense active sites have been widely used in electrocatalysis and electrochemical sensing. The large electron delocalization domains generated by an extended π-conjugated framework through the covalent bonding between metal and organic ligand endow them with unique high conductivity. Yet despite a few promising applications, current research rarely addresses their “structure–property relationship.” This review discusses the rational design of 2D-cMOFs with extraordinary electrochemical performance. We introduce several representative 2D-cMOFs and describe their applications, focusing on electrochemical catalysis and small molecule detection. By correlating the performance of the current materials in these applications and the corresponding mechanisms, we aim to uncover the key structural features that lead to their engineered properties and functions.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 6\",\"pages\":\"Article 100133\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000575/pdfft?md5=dc5af580b7235796ee4af904da6dcac1&pid=1-s2.0-S2667141723000575-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Conductive MOFs for electrocatalysis and electrochemical sensor
Two-dimensional conductive metal–organic frameworks (2D-cMOFs) are a class of 2D layered MOFs with excellent electrical conductivity and other electronic properties. In recent years, their porous structure and dense active sites have been widely used in electrocatalysis and electrochemical sensing. The large electron delocalization domains generated by an extended π-conjugated framework through the covalent bonding between metal and organic ligand endow them with unique high conductivity. Yet despite a few promising applications, current research rarely addresses their “structure–property relationship.” This review discusses the rational design of 2D-cMOFs with extraordinary electrochemical performance. We introduce several representative 2D-cMOFs and describe their applications, focusing on electrochemical catalysis and small molecule detection. By correlating the performance of the current materials in these applications and the corresponding mechanisms, we aim to uncover the key structural features that lead to their engineered properties and functions.