Haiming Mai, Bo-sun Xie, Jianliang Jiang, D. Rao, Yang Liu
{"title":"扬声器数量对水平和混阶双音再现音色的影响","authors":"Haiming Mai, Bo-sun Xie, Jianliang Jiang, D. Rao, Yang Liu","doi":"10.32604/SV.2019.04275","DOIUrl":null,"url":null,"abstract":"Ambisonics is a series of flexible spatial sound reproduction systems based on spatial harmonics decomposition of sound field. Traditional horizontal and spatial Ambisonics reconstruct horizontal and spatial sound field with certain order of spatial harmonics, respectively. Both the Shannon-Nyquist spatial sampling frequency limit for accurately reconstructing sound field and the complexity of system increase with the increasing order of Ambisonics. Based on the fact that the horizontal localization resolution of human hearing is higher than vertical resolution, mixed-order Ambisonics (MOA) reconstructs horizontal sound field with higher order spatial harmonics, while reconstructs vertical sound field with lower order spatial harmonics, and thereby reaches a compromise between the perceptual performance and the complexity of system. For a given order horizontal Ambisoncis or MOA reproduction, the number of horizontal loudspeakers is flexible, providing that it exceeds some low limit. By using Moore’s revised loudness model, the present work analyzes the influence of the number of horizontal loudspeakers on timbre both in horizontal Ambisonics and MOA reproduction. The binaural loudness level spectra (BLLS) of Ambisoncis reproduction are calculated and then compared with those of target sound field. The results indicate that below the Shannon-Nyquist limit of spatial sampling, increasing the number of horizontal loudspeakers influence little on BLLS then timbre. Above the limit, however, the BLLS for Ambisoncis reproduction deviate from those of target sound field. The extent of deviation depends on both the direction of target sound field and the number of loudspeakers. Increasing the number of horizontal loudspeakers may increase the change of BLLS then timbre in some cases, but reduce the change in some other cases. For MOA, the influence of the number of horizontal loudspeakers on BLLS and timbre reduces when virtual source departs from horizontal plane to the high or low elevation. The subjective evaluation experiment also validates the analysis.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"173 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Number of Loudspeakers on the Timbre in Horizontal and Mixed-Order Ambisoncis Reproduction\",\"authors\":\"Haiming Mai, Bo-sun Xie, Jianliang Jiang, D. Rao, Yang Liu\",\"doi\":\"10.32604/SV.2019.04275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambisonics is a series of flexible spatial sound reproduction systems based on spatial harmonics decomposition of sound field. Traditional horizontal and spatial Ambisonics reconstruct horizontal and spatial sound field with certain order of spatial harmonics, respectively. Both the Shannon-Nyquist spatial sampling frequency limit for accurately reconstructing sound field and the complexity of system increase with the increasing order of Ambisonics. Based on the fact that the horizontal localization resolution of human hearing is higher than vertical resolution, mixed-order Ambisonics (MOA) reconstructs horizontal sound field with higher order spatial harmonics, while reconstructs vertical sound field with lower order spatial harmonics, and thereby reaches a compromise between the perceptual performance and the complexity of system. For a given order horizontal Ambisoncis or MOA reproduction, the number of horizontal loudspeakers is flexible, providing that it exceeds some low limit. By using Moore’s revised loudness model, the present work analyzes the influence of the number of horizontal loudspeakers on timbre both in horizontal Ambisonics and MOA reproduction. The binaural loudness level spectra (BLLS) of Ambisoncis reproduction are calculated and then compared with those of target sound field. The results indicate that below the Shannon-Nyquist limit of spatial sampling, increasing the number of horizontal loudspeakers influence little on BLLS then timbre. Above the limit, however, the BLLS for Ambisoncis reproduction deviate from those of target sound field. The extent of deviation depends on both the direction of target sound field and the number of loudspeakers. Increasing the number of horizontal loudspeakers may increase the change of BLLS then timbre in some cases, but reduce the change in some other cases. For MOA, the influence of the number of horizontal loudspeakers on BLLS and timbre reduces when virtual source departs from horizontal plane to the high or low elevation. The subjective evaluation experiment also validates the analysis.\",\"PeriodicalId\":49496,\"journal\":{\"name\":\"Sound and Vibration\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sound and Vibration\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.32604/SV.2019.04275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/SV.2019.04275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Influence of the Number of Loudspeakers on the Timbre in Horizontal and Mixed-Order Ambisoncis Reproduction
Ambisonics is a series of flexible spatial sound reproduction systems based on spatial harmonics decomposition of sound field. Traditional horizontal and spatial Ambisonics reconstruct horizontal and spatial sound field with certain order of spatial harmonics, respectively. Both the Shannon-Nyquist spatial sampling frequency limit for accurately reconstructing sound field and the complexity of system increase with the increasing order of Ambisonics. Based on the fact that the horizontal localization resolution of human hearing is higher than vertical resolution, mixed-order Ambisonics (MOA) reconstructs horizontal sound field with higher order spatial harmonics, while reconstructs vertical sound field with lower order spatial harmonics, and thereby reaches a compromise between the perceptual performance and the complexity of system. For a given order horizontal Ambisoncis or MOA reproduction, the number of horizontal loudspeakers is flexible, providing that it exceeds some low limit. By using Moore’s revised loudness model, the present work analyzes the influence of the number of horizontal loudspeakers on timbre both in horizontal Ambisonics and MOA reproduction. The binaural loudness level spectra (BLLS) of Ambisoncis reproduction are calculated and then compared with those of target sound field. The results indicate that below the Shannon-Nyquist limit of spatial sampling, increasing the number of horizontal loudspeakers influence little on BLLS then timbre. Above the limit, however, the BLLS for Ambisoncis reproduction deviate from those of target sound field. The extent of deviation depends on both the direction of target sound field and the number of loudspeakers. Increasing the number of horizontal loudspeakers may increase the change of BLLS then timbre in some cases, but reduce the change in some other cases. For MOA, the influence of the number of horizontal loudspeakers on BLLS and timbre reduces when virtual source departs from horizontal plane to the high or low elevation. The subjective evaluation experiment also validates the analysis.
期刊介绍:
Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications.
Papers are sought that contribute to the following general topics:
-broad-based interests in noise and vibration-
dynamic measurements-
structural analysis-
computer-aided engineering-
machinery reliability-
dynamic testing