Nadia H. Mohamed, M. Ismail, Wael M Abdel-Mageed, Ahmed A. M. Shoreit
{"title":"两种内生真菌对大角鹿角天然胶乳的生物降解作用","authors":"Nadia H. Mohamed, M. Ismail, Wael M Abdel-Mageed, Ahmed A. M. Shoreit","doi":"10.4172/2155-6199.1000380","DOIUrl":null,"url":null,"abstract":"In this study eight species related to Aspergillus (3 species), Fusarium (1), Penicillium (1), Emericella (1), Nigrospora (1) and Trichoderma (1) were isolated from leaves and latex of Calotropis procera. Only P. chrysogenium and A. niger were able to grow on natural rubber but other species were not. The degrading ability of (Penicillium chrysogenum and Aspergillus niger), isolated from latex of Calotropis procera was assessed. The degradation of rubber latex was determined by measuring the increase in protein content of the fungus (mg/g dry wt), reduction in molecular weight (g/mol) and inherent viscosity (dl/g) of the latex. Moreover, the degradation was also confirmed by observing the growth of these species strain using scanning electron microscopy.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"420 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Biodegradation of Natural Rubber Latex of Calotropis procera by Two Endophytic Fungal Species\",\"authors\":\"Nadia H. Mohamed, M. Ismail, Wael M Abdel-Mageed, Ahmed A. M. Shoreit\",\"doi\":\"10.4172/2155-6199.1000380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study eight species related to Aspergillus (3 species), Fusarium (1), Penicillium (1), Emericella (1), Nigrospora (1) and Trichoderma (1) were isolated from leaves and latex of Calotropis procera. Only P. chrysogenium and A. niger were able to grow on natural rubber but other species were not. The degrading ability of (Penicillium chrysogenum and Aspergillus niger), isolated from latex of Calotropis procera was assessed. The degradation of rubber latex was determined by measuring the increase in protein content of the fungus (mg/g dry wt), reduction in molecular weight (g/mol) and inherent viscosity (dl/g) of the latex. Moreover, the degradation was also confirmed by observing the growth of these species strain using scanning electron microscopy.\",\"PeriodicalId\":15262,\"journal\":{\"name\":\"Journal of Bioremediation and Biodegradation\",\"volume\":\"420 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioremediation and Biodegradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6199.1000380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioremediation and Biodegradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6199.1000380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biodegradation of Natural Rubber Latex of Calotropis procera by Two Endophytic Fungal Species
In this study eight species related to Aspergillus (3 species), Fusarium (1), Penicillium (1), Emericella (1), Nigrospora (1) and Trichoderma (1) were isolated from leaves and latex of Calotropis procera. Only P. chrysogenium and A. niger were able to grow on natural rubber but other species were not. The degrading ability of (Penicillium chrysogenum and Aspergillus niger), isolated from latex of Calotropis procera was assessed. The degradation of rubber latex was determined by measuring the increase in protein content of the fungus (mg/g dry wt), reduction in molecular weight (g/mol) and inherent viscosity (dl/g) of the latex. Moreover, the degradation was also confirmed by observing the growth of these species strain using scanning electron microscopy.