{"title":"多视角动作识别,一次一个摄像头","authors":"Scott Spurlock, Richard Souvenir","doi":"10.1109/WACV.2014.6836047","DOIUrl":null,"url":null,"abstract":"For human action recognition methods, there is often a trade-off between classification accuracy and computational efficiency. Methods that include 3D information from multiple cameras are often computationally expensive and not suitable for real-time application. 2D, frame-based methods are generally more efficient, but suffer from lower recognition accuracies. In this paper, we present a hybrid keypose-based method that operates in a multi-camera environment, but uses only a single camera at a time. We learn, for each keypose, the relative utility of a particular viewpoint compared with switching to a different available camera in the network for future classification. On a benchmark multi-camera action recognition dataset, our method outperforms approaches that incorporate all available cameras.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"91 1","pages":"604-609"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-view action recognition one camera at a time\",\"authors\":\"Scott Spurlock, Richard Souvenir\",\"doi\":\"10.1109/WACV.2014.6836047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For human action recognition methods, there is often a trade-off between classification accuracy and computational efficiency. Methods that include 3D information from multiple cameras are often computationally expensive and not suitable for real-time application. 2D, frame-based methods are generally more efficient, but suffer from lower recognition accuracies. In this paper, we present a hybrid keypose-based method that operates in a multi-camera environment, but uses only a single camera at a time. We learn, for each keypose, the relative utility of a particular viewpoint compared with switching to a different available camera in the network for future classification. On a benchmark multi-camera action recognition dataset, our method outperforms approaches that incorporate all available cameras.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"91 1\",\"pages\":\"604-609\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-view action recognition one camera at a time
For human action recognition methods, there is often a trade-off between classification accuracy and computational efficiency. Methods that include 3D information from multiple cameras are often computationally expensive and not suitable for real-time application. 2D, frame-based methods are generally more efficient, but suffer from lower recognition accuracies. In this paper, we present a hybrid keypose-based method that operates in a multi-camera environment, but uses only a single camera at a time. We learn, for each keypose, the relative utility of a particular viewpoint compared with switching to a different available camera in the network for future classification. On a benchmark multi-camera action recognition dataset, our method outperforms approaches that incorporate all available cameras.