把亚胺合成的压力:柑桔汁作为反应介质在入门有机实验室

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Nigam, Dylan Tuttle, Barbora Morra, A. Dicks, Jose Rodriguez
{"title":"把亚胺合成的压力:柑桔汁作为反应介质在入门有机实验室","authors":"M. Nigam, Dylan Tuttle, Barbora Morra, A. Dicks, Jose Rodriguez","doi":"10.1080/17518253.2023.2185107","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n A less hazardous and energy efficient reaction performed using freshly squeezed citrus juice as solvent has been designed and implemented within a sophomore level organic chemistry laboratory. The primary learning objectives are to enable students to (i) identify and reflect upon various green chemistry principles such as waste prevention, atom economy, less hazardous synthesis, use of safer chemicals, catalysis, design for energy efficiency, and inherently safer chemistry for accident prevention; (ii) use proton NMR spectroscopic data to characterize a synthesized Schiff base (imine); and (iii) describe the reaction mechanism for imine formation, including the reasoning for why citrus juice is an excellent reaction medium. Specifically, 4-nitrobenzaldehyde is combined with 4-methoxyaniline at room temperature in the presence of four different fruit juices as reaction media to successfully synthesize an imine that is expensive to procure commercially. This is followed by students undertaking reduction of the imine to form a secondary amine which has a dramatically distinct color due to the disruption in conjugation. In performing this overall reductive amination, students expand their knowledge on acid-catalyzed imine synthesis and its mechanism, strengthen their practical skills in the laboratory, and reflect on green chemistry principles within the context of fundamental organic reactivity. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Putting the squeeze on imine synthesis: citrus juice as a reaction medium in the introductory organic laboratory\",\"authors\":\"M. Nigam, Dylan Tuttle, Barbora Morra, A. Dicks, Jose Rodriguez\",\"doi\":\"10.1080/17518253.2023.2185107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n A less hazardous and energy efficient reaction performed using freshly squeezed citrus juice as solvent has been designed and implemented within a sophomore level organic chemistry laboratory. The primary learning objectives are to enable students to (i) identify and reflect upon various green chemistry principles such as waste prevention, atom economy, less hazardous synthesis, use of safer chemicals, catalysis, design for energy efficiency, and inherently safer chemistry for accident prevention; (ii) use proton NMR spectroscopic data to characterize a synthesized Schiff base (imine); and (iii) describe the reaction mechanism for imine formation, including the reasoning for why citrus juice is an excellent reaction medium. Specifically, 4-nitrobenzaldehyde is combined with 4-methoxyaniline at room temperature in the presence of four different fruit juices as reaction media to successfully synthesize an imine that is expensive to procure commercially. This is followed by students undertaking reduction of the imine to form a secondary amine which has a dramatically distinct color due to the disruption in conjugation. In performing this overall reductive amination, students expand their knowledge on acid-catalyzed imine synthesis and its mechanism, strengthen their practical skills in the laboratory, and reflect on green chemistry principles within the context of fundamental organic reactivity. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12768,\"journal\":{\"name\":\"Green Chemistry Letters and Reviews\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Letters and Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17518253.2023.2185107\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2185107","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Putting the squeeze on imine synthesis: citrus juice as a reaction medium in the introductory organic laboratory
ABSTRACT A less hazardous and energy efficient reaction performed using freshly squeezed citrus juice as solvent has been designed and implemented within a sophomore level organic chemistry laboratory. The primary learning objectives are to enable students to (i) identify and reflect upon various green chemistry principles such as waste prevention, atom economy, less hazardous synthesis, use of safer chemicals, catalysis, design for energy efficiency, and inherently safer chemistry for accident prevention; (ii) use proton NMR spectroscopic data to characterize a synthesized Schiff base (imine); and (iii) describe the reaction mechanism for imine formation, including the reasoning for why citrus juice is an excellent reaction medium. Specifically, 4-nitrobenzaldehyde is combined with 4-methoxyaniline at room temperature in the presence of four different fruit juices as reaction media to successfully synthesize an imine that is expensive to procure commercially. This is followed by students undertaking reduction of the imine to form a secondary amine which has a dramatically distinct color due to the disruption in conjugation. In performing this overall reductive amination, students expand their knowledge on acid-catalyzed imine synthesis and its mechanism, strengthen their practical skills in the laboratory, and reflect on green chemistry principles within the context of fundamental organic reactivity. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信