N. Bahiyah Baba, A. S. Ghazali, A. A. Abdul Rahman, S. Sharif
{"title":"热处理化学镀Ni-YSZ陶瓷涂层显微硬度参数优化","authors":"N. Bahiyah Baba, A. S. Ghazali, A. A. Abdul Rahman, S. Sharif","doi":"10.5604/01.3001.0016.0293","DOIUrl":null,"url":null,"abstract":"The paper discusses the parametric optimisation of the electroless Ni-YSZ cermet coating microhardness upon heat treatment. Heat treatment is a process to increase the mechanical properties of the electroless nickel coating and it can be enhanced by manipulating its parameters. Parametric optimisation is conducted by the design of experiment full factorial 3x3 with 27 runs. Treating temperature, treating time and ceramic particle size parameters at 3-level are evaluated using statistical tool ANOVA in Minitab20.\n\nNi-YSZ cermet coating is deposited onto a high-speed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400oC and 0-2 hours respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation was analysed using Cambridge Stereoscan 90 Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray Analysis (EDXA).\n\nThe optimum condition in obtaining high microhardness on Ni-YSZ cermet coating is evaluated by statistical tool ANOVA in Minitab20 software. It is found that the most significant parameter for high microhardness is at the treating temperature of 400oC followed by treating time at 2 hours using nano-sized YSZ particles. The ceramic particle size is found not a significant parameter in obtaining a high microhardness, however it has effect on interaction between treating temperature and treating time.\n\nThe paper only limits to the optimisation condition of microhardness on Ni-YSZ cermet coating hardness property by varying heat treatment parameters.\n\nThe optimisation condition obtained might only applicable to the electroless Ni-YSZ cermet coating with similar electroless nickel solution and treatments.\n\nThe value of this work is the heat treatment parametric optimisation to obtain high microhardness on electroless Ni-YSZ cermet coating by using the design of experiment 3-level full factorial.\n\n","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric optimisation of microhardness on heat-treated electroless Ni-YSZ cermet coating\",\"authors\":\"N. Bahiyah Baba, A. S. Ghazali, A. A. Abdul Rahman, S. Sharif\",\"doi\":\"10.5604/01.3001.0016.0293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses the parametric optimisation of the electroless Ni-YSZ cermet coating microhardness upon heat treatment. Heat treatment is a process to increase the mechanical properties of the electroless nickel coating and it can be enhanced by manipulating its parameters. Parametric optimisation is conducted by the design of experiment full factorial 3x3 with 27 runs. Treating temperature, treating time and ceramic particle size parameters at 3-level are evaluated using statistical tool ANOVA in Minitab20.\\n\\nNi-YSZ cermet coating is deposited onto a high-speed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400oC and 0-2 hours respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation was analysed using Cambridge Stereoscan 90 Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray Analysis (EDXA).\\n\\nThe optimum condition in obtaining high microhardness on Ni-YSZ cermet coating is evaluated by statistical tool ANOVA in Minitab20 software. It is found that the most significant parameter for high microhardness is at the treating temperature of 400oC followed by treating time at 2 hours using nano-sized YSZ particles. The ceramic particle size is found not a significant parameter in obtaining a high microhardness, however it has effect on interaction between treating temperature and treating time.\\n\\nThe paper only limits to the optimisation condition of microhardness on Ni-YSZ cermet coating hardness property by varying heat treatment parameters.\\n\\nThe optimisation condition obtained might only applicable to the electroless Ni-YSZ cermet coating with similar electroless nickel solution and treatments.\\n\\nThe value of this work is the heat treatment parametric optimisation to obtain high microhardness on electroless Ni-YSZ cermet coating by using the design of experiment 3-level full factorial.\\n\\n\",\"PeriodicalId\":14825,\"journal\":{\"name\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0016.0293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.0293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Parametric optimisation of microhardness on heat-treated electroless Ni-YSZ cermet coating
The paper discusses the parametric optimisation of the electroless Ni-YSZ cermet coating microhardness upon heat treatment. Heat treatment is a process to increase the mechanical properties of the electroless nickel coating and it can be enhanced by manipulating its parameters. Parametric optimisation is conducted by the design of experiment full factorial 3x3 with 27 runs. Treating temperature, treating time and ceramic particle size parameters at 3-level are evaluated using statistical tool ANOVA in Minitab20.
Ni-YSZ cermet coating is deposited onto a high-speed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400oC and 0-2 hours respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation was analysed using Cambridge Stereoscan 90 Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray Analysis (EDXA).
The optimum condition in obtaining high microhardness on Ni-YSZ cermet coating is evaluated by statistical tool ANOVA in Minitab20 software. It is found that the most significant parameter for high microhardness is at the treating temperature of 400oC followed by treating time at 2 hours using nano-sized YSZ particles. The ceramic particle size is found not a significant parameter in obtaining a high microhardness, however it has effect on interaction between treating temperature and treating time.
The paper only limits to the optimisation condition of microhardness on Ni-YSZ cermet coating hardness property by varying heat treatment parameters.
The optimisation condition obtained might only applicable to the electroless Ni-YSZ cermet coating with similar electroless nickel solution and treatments.
The value of this work is the heat treatment parametric optimisation to obtain high microhardness on electroless Ni-YSZ cermet coating by using the design of experiment 3-level full factorial.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]