K. Bagandova, E. Zulkarneev, I. Kiseleva, T. Mizaeva, A. Vorobev, O. G. Efimova, M. P. Medvedovskaya, M. A. Pasivkina, A. V. Aleshkin
{"title":"用于治疗多重耐药细菌感染的转基因噬菌体(综述)","authors":"K. Bagandova, E. Zulkarneev, I. Kiseleva, T. Mizaeva, A. Vorobev, O. G. Efimova, M. P. Medvedovskaya, M. A. Pasivkina, A. V. Aleshkin","doi":"10.23946/2500-0764-2022-7-3-54-63","DOIUrl":null,"url":null,"abstract":"Antibiotic resistance represents an urgent and unresolved issue due to a rapid spread of multidrug-resistance organisms (MDROs). An alternative approach is the medical use of bacteriophages which have selective and lytic activity against specific bacterial strains, in contrast to broad-spectrum antibiotics. Isolation of bacteriophages is a multi-step, tedious, and labour-intensive technique, and physiology of various bacteriophages has been vaguely studied. These drawbacks hamper the flow production of bacteriophage preparations and require a stringent quality control. Here, we review the existing literature on genetically modified bacteriophages, in particular studies which examined efficacy of such bacteriophages for the treatment of multidrug-resistant infections. Genetically modified bacteriophages showed high efficiency in patients with multidrug-resistant infections applied either as a main treatment modality or as an adjuvant therapy added to the antibiotic treatment protocols. The key advantage of genetically modified bacteriophages is broader and higher lytic activity, as they can target antibiotic resistance genes such as efflux pumps, and low immunogenicity which delays their elimination by immune cells. We propose that genetically modified bacteriophages are able to overcome the shortcomings of natural bacteriophages and can be implemented for the prevention and treatment of bacterial infections, in particular those caused by MDROs.","PeriodicalId":12493,"journal":{"name":"Fundamental and Clinical Medicine","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically modified bacteriophages creating for the treatment of infections caused by multidrug resistant bacteria (review)\",\"authors\":\"K. Bagandova, E. Zulkarneev, I. Kiseleva, T. Mizaeva, A. Vorobev, O. G. Efimova, M. P. Medvedovskaya, M. A. Pasivkina, A. V. Aleshkin\",\"doi\":\"10.23946/2500-0764-2022-7-3-54-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antibiotic resistance represents an urgent and unresolved issue due to a rapid spread of multidrug-resistance organisms (MDROs). An alternative approach is the medical use of bacteriophages which have selective and lytic activity against specific bacterial strains, in contrast to broad-spectrum antibiotics. Isolation of bacteriophages is a multi-step, tedious, and labour-intensive technique, and physiology of various bacteriophages has been vaguely studied. These drawbacks hamper the flow production of bacteriophage preparations and require a stringent quality control. Here, we review the existing literature on genetically modified bacteriophages, in particular studies which examined efficacy of such bacteriophages for the treatment of multidrug-resistant infections. Genetically modified bacteriophages showed high efficiency in patients with multidrug-resistant infections applied either as a main treatment modality or as an adjuvant therapy added to the antibiotic treatment protocols. The key advantage of genetically modified bacteriophages is broader and higher lytic activity, as they can target antibiotic resistance genes such as efflux pumps, and low immunogenicity which delays their elimination by immune cells. We propose that genetically modified bacteriophages are able to overcome the shortcomings of natural bacteriophages and can be implemented for the prevention and treatment of bacterial infections, in particular those caused by MDROs.\",\"PeriodicalId\":12493,\"journal\":{\"name\":\"Fundamental and Clinical Medicine\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental and Clinical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23946/2500-0764-2022-7-3-54-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and Clinical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23946/2500-0764-2022-7-3-54-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetically modified bacteriophages creating for the treatment of infections caused by multidrug resistant bacteria (review)
Antibiotic resistance represents an urgent and unresolved issue due to a rapid spread of multidrug-resistance organisms (MDROs). An alternative approach is the medical use of bacteriophages which have selective and lytic activity against specific bacterial strains, in contrast to broad-spectrum antibiotics. Isolation of bacteriophages is a multi-step, tedious, and labour-intensive technique, and physiology of various bacteriophages has been vaguely studied. These drawbacks hamper the flow production of bacteriophage preparations and require a stringent quality control. Here, we review the existing literature on genetically modified bacteriophages, in particular studies which examined efficacy of such bacteriophages for the treatment of multidrug-resistant infections. Genetically modified bacteriophages showed high efficiency in patients with multidrug-resistant infections applied either as a main treatment modality or as an adjuvant therapy added to the antibiotic treatment protocols. The key advantage of genetically modified bacteriophages is broader and higher lytic activity, as they can target antibiotic resistance genes such as efflux pumps, and low immunogenicity which delays their elimination by immune cells. We propose that genetically modified bacteriophages are able to overcome the shortcomings of natural bacteriophages and can be implemented for the prevention and treatment of bacterial infections, in particular those caused by MDROs.