Moch Khabibul Adi Rachmanto, Liliana Triatmajaning Wibowo, T. Paramitha
{"title":"复核:锂电池锂离子合成的方法","authors":"Moch Khabibul Adi Rachmanto, Liliana Triatmajaning Wibowo, T. Paramitha","doi":"10.20961/EQUILIBRIUM.V3I2.42833","DOIUrl":null,"url":null,"abstract":"Abstrak. Material katoda merupakan salah satu komponen penting pada baterai berbasis lithium-ion. Material katoda yang digunakan dalam baterai lithium-ion diantaranya LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, dan LNCM (LiNi0,3Co0,3Mn0,3O2). Katoda LiFePO4 yang memiliki keunggulan beda tegangan operasi yang tinggi (3,45 V phosphoolivines), kapasitas spesifik tinggi (170 mAh/g), biaya bahan baku murah, ramah lingkungan, kestabilan terhadap panas tinggi, dan dapat diaplikasikan sebagai penyimpanan daya tinggi. Namun, LiFePO4 juga memiliki beberapa kelemahan yaitu memiliki konduktivitas rendah, laju difusi ion Li+ yang lambat, dan kerapatan energi yang rendah. Untuk mengoptimalkan kekurangan tersebut, telah dilakukan sintesis katoda dengan berbagai metode. Artikel ilmiah ini membahas mengenai sintesis katoda LiFePO4 dengan beberapa metode, yaitu presipitasi, solid state, dan sol gel. Selain itu, artikel ini memuat tinjauan (review) mengenai hasil analisa struktur, morfologi, dan performa elektrokimia baterai dengan katoda LiFePO4. Abstract. Cathode material is one of important component in lithium ion batteries. Cathode materials used in lithium ion batteries including LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, and LNCM (LiNi0,3Co0,3Mn0,3O2). The advantage of LiFePO4 cathode are high operating voltage (3.45 V phosphoolivines), high specific capacity (170 mAh/g), low cost raw material, environmentally friendly, high heat stability, and can be applied as high power storage. However, LiFePO4 also has disadvantages, such as low conductivity, slow diffusion rate of Li+ ions, and low energy density. To optimize these deficiencies, cathode synthesis has been carried out with various methods. This scientific article discusses the synthesis of the LiFePO4 cathode with several methods, namely precipitation, solid state, and sol gel. In addition, this article discuss about review of the structural analysis, morphology, and electrochemical performance of LiFePO4 cathode batteries. Keywords: LiFePO4, cathode, synthesis, lithium ion batteries","PeriodicalId":11866,"journal":{"name":"Equilibrium Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review : Metode Sintesis Katoda LiFePO4 Baterai Lithium-Ion\",\"authors\":\"Moch Khabibul Adi Rachmanto, Liliana Triatmajaning Wibowo, T. Paramitha\",\"doi\":\"10.20961/EQUILIBRIUM.V3I2.42833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrak. Material katoda merupakan salah satu komponen penting pada baterai berbasis lithium-ion. Material katoda yang digunakan dalam baterai lithium-ion diantaranya LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, dan LNCM (LiNi0,3Co0,3Mn0,3O2). Katoda LiFePO4 yang memiliki keunggulan beda tegangan operasi yang tinggi (3,45 V phosphoolivines), kapasitas spesifik tinggi (170 mAh/g), biaya bahan baku murah, ramah lingkungan, kestabilan terhadap panas tinggi, dan dapat diaplikasikan sebagai penyimpanan daya tinggi. Namun, LiFePO4 juga memiliki beberapa kelemahan yaitu memiliki konduktivitas rendah, laju difusi ion Li+ yang lambat, dan kerapatan energi yang rendah. Untuk mengoptimalkan kekurangan tersebut, telah dilakukan sintesis katoda dengan berbagai metode. Artikel ilmiah ini membahas mengenai sintesis katoda LiFePO4 dengan beberapa metode, yaitu presipitasi, solid state, dan sol gel. Selain itu, artikel ini memuat tinjauan (review) mengenai hasil analisa struktur, morfologi, dan performa elektrokimia baterai dengan katoda LiFePO4. Abstract. Cathode material is one of important component in lithium ion batteries. Cathode materials used in lithium ion batteries including LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, and LNCM (LiNi0,3Co0,3Mn0,3O2). The advantage of LiFePO4 cathode are high operating voltage (3.45 V phosphoolivines), high specific capacity (170 mAh/g), low cost raw material, environmentally friendly, high heat stability, and can be applied as high power storage. However, LiFePO4 also has disadvantages, such as low conductivity, slow diffusion rate of Li+ ions, and low energy density. To optimize these deficiencies, cathode synthesis has been carried out with various methods. This scientific article discusses the synthesis of the LiFePO4 cathode with several methods, namely precipitation, solid state, and sol gel. In addition, this article discuss about review of the structural analysis, morphology, and electrochemical performance of LiFePO4 cathode batteries. Keywords: LiFePO4, cathode, synthesis, lithium ion batteries\",\"PeriodicalId\":11866,\"journal\":{\"name\":\"Equilibrium Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Equilibrium Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20961/EQUILIBRIUM.V3I2.42833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/EQUILIBRIUM.V3I2.42833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
抽象。阴极材料是锂电池的重要组成部分。锂电池中使用的katoda物质包括inca (lini0.8co0.15al05o2)、LiCoO2、LiMn2O4、LiFePO4和LNCM (lini0.3co0.3氧气)。阴极生命波4特别高的手术电压(3.45 V磷)、具体容量(170马赫/g)、低成本、环保、适应高温、可应用于高能存储。然而,LiFePO4也有一些弱点,即导电率低,Li离子+扩散速度慢,能量密度低。为了优化缺陷,用多种方法合成阴极。这篇科学文章讨论的是用折射、固态和溶胶等多种方法合成活体体。此外,这篇文章还概述了对电池阴极、形态和电化学性能的分析。抽象。天主教的材料是锂离子电池中最重要的结合之一。《锂材料》(lini0.8co0.15al05o2)、LiCoO2、LiMn2O4、LiFePO4和LNCM (lini0.3co0.3氧气)中使用的天主教材料。《生活高级福利》(3.45 V磷)、《高级技能》(170个月前)、环境友好、高热量稳定以及可应用于高级电力储存。However, LiFePO4也受到伤害,就像低钠、低氧、低能量密度一样。为了使这些缺陷变得乐观,天主教合成学已经考虑了各种各样的方法。这篇科学的文章将《生命的合成性》(the scientific article discussis of life - 4)分解出几种几种方法的生命组合:在补充中,这篇文章是关于结构分析、形态学和电化学生命表现的评论。键词:生命po4,天主教,合成术,锂离子电池
Review : Metode Sintesis Katoda LiFePO4 Baterai Lithium-Ion
Abstrak. Material katoda merupakan salah satu komponen penting pada baterai berbasis lithium-ion. Material katoda yang digunakan dalam baterai lithium-ion diantaranya LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, dan LNCM (LiNi0,3Co0,3Mn0,3O2). Katoda LiFePO4 yang memiliki keunggulan beda tegangan operasi yang tinggi (3,45 V phosphoolivines), kapasitas spesifik tinggi (170 mAh/g), biaya bahan baku murah, ramah lingkungan, kestabilan terhadap panas tinggi, dan dapat diaplikasikan sebagai penyimpanan daya tinggi. Namun, LiFePO4 juga memiliki beberapa kelemahan yaitu memiliki konduktivitas rendah, laju difusi ion Li+ yang lambat, dan kerapatan energi yang rendah. Untuk mengoptimalkan kekurangan tersebut, telah dilakukan sintesis katoda dengan berbagai metode. Artikel ilmiah ini membahas mengenai sintesis katoda LiFePO4 dengan beberapa metode, yaitu presipitasi, solid state, dan sol gel. Selain itu, artikel ini memuat tinjauan (review) mengenai hasil analisa struktur, morfologi, dan performa elektrokimia baterai dengan katoda LiFePO4. Abstract. Cathode material is one of important component in lithium ion batteries. Cathode materials used in lithium ion batteries including LNCA (LiNi0,8Co0,15Al0,05O2), LiCoO2, LiMn2O4, LiFePO4, and LNCM (LiNi0,3Co0,3Mn0,3O2). The advantage of LiFePO4 cathode are high operating voltage (3.45 V phosphoolivines), high specific capacity (170 mAh/g), low cost raw material, environmentally friendly, high heat stability, and can be applied as high power storage. However, LiFePO4 also has disadvantages, such as low conductivity, slow diffusion rate of Li+ ions, and low energy density. To optimize these deficiencies, cathode synthesis has been carried out with various methods. This scientific article discusses the synthesis of the LiFePO4 cathode with several methods, namely precipitation, solid state, and sol gel. In addition, this article discuss about review of the structural analysis, morphology, and electrochemical performance of LiFePO4 cathode batteries. Keywords: LiFePO4, cathode, synthesis, lithium ion batteries