具有周期和积分边界条件的abc -分数阶微分方程的存在性解

M. Muhammad, A. Rafeeq
{"title":"具有周期和积分边界条件的abc -分数阶微分方程的存在性解","authors":"M. Muhammad, A. Rafeeq","doi":"10.3329/jsr.v14i3.58210","DOIUrl":null,"url":null,"abstract":"The nonlinear fractional differential equation (FDE) is discussed in this study. First, we will investigate the existence and uniqueness solution of the nonlinear differential equation to the Atangana-Baleanu fractional derivative in the sense of Caputo with the initial periodic condition and integral boundary condition by Krasnoselskii’s and Banach fixed point theorems. Then, we will study the Hyers-Ulam stability of our problem. Finally, we presented an example to demonstrate the use of our main theorems.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence Solutions of ABC-Fractional Differential Equations with Periodic and Integral Boundary Conditions\",\"authors\":\"M. Muhammad, A. Rafeeq\",\"doi\":\"10.3329/jsr.v14i3.58210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear fractional differential equation (FDE) is discussed in this study. First, we will investigate the existence and uniqueness solution of the nonlinear differential equation to the Atangana-Baleanu fractional derivative in the sense of Caputo with the initial periodic condition and integral boundary condition by Krasnoselskii’s and Banach fixed point theorems. Then, we will study the Hyers-Ulam stability of our problem. Finally, we presented an example to demonstrate the use of our main theorems.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v14i3.58210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.58210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了非线性分数阶微分方程。首先,利用Krasnoselskii不动点定理和Banach不动点定理,研究了具有初始周期条件和积分边界条件的Caputo意义下Atangana-Baleanu分数阶导数非线性微分方程的存在唯一性解。然后,我们将研究问题的Hyers-Ulam稳定性。最后,我们给出了一个示例来演示我们的主要定理的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence Solutions of ABC-Fractional Differential Equations with Periodic and Integral Boundary Conditions
The nonlinear fractional differential equation (FDE) is discussed in this study. First, we will investigate the existence and uniqueness solution of the nonlinear differential equation to the Atangana-Baleanu fractional derivative in the sense of Caputo with the initial periodic condition and integral boundary condition by Krasnoselskii’s and Banach fixed point theorems. Then, we will study the Hyers-Ulam stability of our problem. Finally, we presented an example to demonstrate the use of our main theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信