面向自动化任务的工业油吸附净化过程仿真

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
Liudmyla Yaroshchuk, Yevheniia Tiurina
{"title":"面向自动化任务的工业油吸附净化过程仿真","authors":"Liudmyla Yaroshchuk, Yevheniia Tiurina","doi":"10.1155/2022/2738654","DOIUrl":null,"url":null,"abstract":"Objective reasons associated with an increase of transport quantity and the volume of industrial goods and energy service production lead to the accumulation of used oils and greases. These substances can be reused in the case of their purification. Such resource saving is facilitated by the development of technologies, in particular, adsorption purification and efficient systems for their automation. The article carried out a detailed analysis of the continuous adsorption purification technological system and indicated its significant differences from the point of view of control systems with special preparation of raw materials. The conclusion about the presence of nonstationarity and stochasticity sources of continuous adsorption as a control object is substantiated, which made it possible to impose requirements on the properties of the control model. The existing methods of adsorption mathematical description are analyzed within their use for continuous control. Structures of dynamic models based on a combination of analytical and experimental methods are proposed. Analytical models are based on mass balances of substances, known forms of approximations for describing equilibrium conditions and adsorption kinetics are studied, and experimental and statistical modeling is carried out to determine possible structures of the connection between technological variables during control. A structural-parametric scheme of the model and a scheme for its adaptation in control systems have been formed. An example of an adsorption simulation model formation using MATLAB+Simulink is shown. The results can be used to develop software for control systems of continuous adsorption and to test control algorithms.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the Industrial Oil Adsorption Purification Process for Automation Tasks\",\"authors\":\"Liudmyla Yaroshchuk, Yevheniia Tiurina\",\"doi\":\"10.1155/2022/2738654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective reasons associated with an increase of transport quantity and the volume of industrial goods and energy service production lead to the accumulation of used oils and greases. These substances can be reused in the case of their purification. Such resource saving is facilitated by the development of technologies, in particular, adsorption purification and efficient systems for their automation. The article carried out a detailed analysis of the continuous adsorption purification technological system and indicated its significant differences from the point of view of control systems with special preparation of raw materials. The conclusion about the presence of nonstationarity and stochasticity sources of continuous adsorption as a control object is substantiated, which made it possible to impose requirements on the properties of the control model. The existing methods of adsorption mathematical description are analyzed within their use for continuous control. Structures of dynamic models based on a combination of analytical and experimental methods are proposed. Analytical models are based on mass balances of substances, known forms of approximations for describing equilibrium conditions and adsorption kinetics are studied, and experimental and statistical modeling is carried out to determine possible structures of the connection between technological variables during control. A structural-parametric scheme of the model and a scheme for its adaptation in control systems have been formed. An example of an adsorption simulation model formation using MATLAB+Simulink is shown. The results can be used to develop software for control systems of continuous adsorption and to test control algorithms.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2738654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2738654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与运输量、工业品和能源服务产量增加有关的客观原因导致废油和油脂的积累。这些物质在净化的情况下可以重复使用。技术的发展,特别是吸附净化及其自动化的有效系统,促进了这种资源节约。本文对连续吸附净化工艺系统进行了详细的分析,并从特殊原料制备的控制系统的角度指出了其显著差异。作为控制对象的连续吸附存在非平稳和随机源的结论得到了证实,这使得对控制模型的性质提出了要求。分析了现有吸附数学描述方法在连续控制中的应用。提出了基于分析方法和实验方法相结合的动力模型结构。分析模型是基于物质的质量平衡,已知形式的近似描述平衡条件和吸附动力学进行了研究,并进行了实验和统计建模,以确定控制过程中技术变量之间的连接可能的结构。给出了模型的结构参数化方案及其在控制系统中的自适应方案。给出了利用MATLAB+Simulink建立吸附模拟模型的实例。研究结果可用于开发连续吸附控制系统的软件和测试控制算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of the Industrial Oil Adsorption Purification Process for Automation Tasks
Objective reasons associated with an increase of transport quantity and the volume of industrial goods and energy service production lead to the accumulation of used oils and greases. These substances can be reused in the case of their purification. Such resource saving is facilitated by the development of technologies, in particular, adsorption purification and efficient systems for their automation. The article carried out a detailed analysis of the continuous adsorption purification technological system and indicated its significant differences from the point of view of control systems with special preparation of raw materials. The conclusion about the presence of nonstationarity and stochasticity sources of continuous adsorption as a control object is substantiated, which made it possible to impose requirements on the properties of the control model. The existing methods of adsorption mathematical description are analyzed within their use for continuous control. Structures of dynamic models based on a combination of analytical and experimental methods are proposed. Analytical models are based on mass balances of substances, known forms of approximations for describing equilibrium conditions and adsorption kinetics are studied, and experimental and statistical modeling is carried out to determine possible structures of the connection between technological variables during control. A structural-parametric scheme of the model and a scheme for its adaptation in control systems have been formed. An example of an adsorption simulation model formation using MATLAB+Simulink is shown. The results can be used to develop software for control systems of continuous adsorption and to test control algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信