离散Hopfield神经网络的几个对称性

Jiyang Dong, Jun-ying Zhang
{"title":"离散Hopfield神经网络的几个对称性","authors":"Jiyang Dong, Jun-ying Zhang","doi":"10.1109/ICMLC.2002.1167431","DOIUrl":null,"url":null,"abstract":"Symmetry is powerful tool to reduce the freedom of a problem. Discrete Hopfield neural networks with Hebbian learning are studied by the method of group theory in this paper, and several symmetry properties of the network being an auto-associator are given and proved.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"92 1","pages":"1374-1378 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Several symmetry properties of discrete Hopfield neural networks\",\"authors\":\"Jiyang Dong, Jun-ying Zhang\",\"doi\":\"10.1109/ICMLC.2002.1167431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetry is powerful tool to reduce the freedom of a problem. Discrete Hopfield neural networks with Hebbian learning are studied by the method of group theory in this paper, and several symmetry properties of the network being an auto-associator are given and proved.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"92 1\",\"pages\":\"1374-1378 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1167431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1167431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对称是减少问题自由度的有力工具。本文用群论的方法研究了具有Hebbian学习的离散Hopfield神经网络,给出并证明了该网络为自关联子的几个对称性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Several symmetry properties of discrete Hopfield neural networks
Symmetry is powerful tool to reduce the freedom of a problem. Discrete Hopfield neural networks with Hebbian learning are studied by the method of group theory in this paper, and several symmetry properties of the network being an auto-associator are given and proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信