电迁移纳米隙的制备及其应用综述

Youngsang Kim, Charles H. Ang, Kwissy Ang, S. Chang
{"title":"电迁移纳米隙的制备及其应用综述","authors":"Youngsang Kim, Charles H. Ang, Kwissy Ang, S. Chang","doi":"10.1116/6.0000866","DOIUrl":null,"url":null,"abstract":"Electromigration—a critical failure mode of metal interconnects in integrated circuits—has been exploited for constructing nanometer-sized gaps (or nanogaps, less than a few nanometers) on metallic nanowires. Electromigrated nanogaps have been utilized extensively in the field of nanotechnology and have demonstrated to be an effective platform for electrically accessing small things such as molecules in a device fashion, establishing metal-molecule-metal junctions. These devices allow the study of the electronic transport phenomena through molecules and DNA. Furthermore, electromigrated nanogaps can read out incident electromagnetic fields as an antenna due to the plasmonic excitation on the surface, which is usually maximized in nanogaps. Moreover, structural changes caused by electromigration on metallic nanowires have been leveraged to create single-component resistive switching memories. In this review, we discuss the recent progress and challenges of electromigration methods for a nanogap creation as well as their applications for electronic devices (molecular/DNA devices and resistive switches), thermoelectric energy conversion devices, and photonic devices (nanoantennas).","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electromigrated nanogaps: A review on the fabrications and applications\",\"authors\":\"Youngsang Kim, Charles H. Ang, Kwissy Ang, S. Chang\",\"doi\":\"10.1116/6.0000866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromigration—a critical failure mode of metal interconnects in integrated circuits—has been exploited for constructing nanometer-sized gaps (or nanogaps, less than a few nanometers) on metallic nanowires. Electromigrated nanogaps have been utilized extensively in the field of nanotechnology and have demonstrated to be an effective platform for electrically accessing small things such as molecules in a device fashion, establishing metal-molecule-metal junctions. These devices allow the study of the electronic transport phenomena through molecules and DNA. Furthermore, electromigrated nanogaps can read out incident electromagnetic fields as an antenna due to the plasmonic excitation on the surface, which is usually maximized in nanogaps. Moreover, structural changes caused by electromigration on metallic nanowires have been leveraged to create single-component resistive switching memories. In this review, we discuss the recent progress and challenges of electromigration methods for a nanogap creation as well as their applications for electronic devices (molecular/DNA devices and resistive switches), thermoelectric energy conversion devices, and photonic devices (nanoantennas).\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电迁移——集成电路中金属互连的一种关键失效模式——已被用于在金属纳米线上构建纳米尺寸的间隙(或小于几纳米的纳米间隙)。电迁移纳米间隙在纳米技术领域得到了广泛的应用,并被证明是一种有效的平台,可以以器件的方式电访问小物体,如分子,建立金属-分子-金属结。这些装置允许研究电子通过分子和DNA的传输现象。此外,由于表面的等离子体激发,电迁移纳米隙可以作为天线读取入射电磁场,而等离子体激发在纳米隙中通常是最大的。此外,金属纳米线上的电迁移引起的结构变化已被用于制造单组分电阻开关存储器。在这篇综述中,我们讨论了电迁移方法的最新进展和挑战,以及它们在电子器件(分子/DNA器件和电阻开关)、热电能量转换器件和光子器件(纳米天线)中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromigrated nanogaps: A review on the fabrications and applications
Electromigration—a critical failure mode of metal interconnects in integrated circuits—has been exploited for constructing nanometer-sized gaps (or nanogaps, less than a few nanometers) on metallic nanowires. Electromigrated nanogaps have been utilized extensively in the field of nanotechnology and have demonstrated to be an effective platform for electrically accessing small things such as molecules in a device fashion, establishing metal-molecule-metal junctions. These devices allow the study of the electronic transport phenomena through molecules and DNA. Furthermore, electromigrated nanogaps can read out incident electromagnetic fields as an antenna due to the plasmonic excitation on the surface, which is usually maximized in nanogaps. Moreover, structural changes caused by electromigration on metallic nanowires have been leveraged to create single-component resistive switching memories. In this review, we discuss the recent progress and challenges of electromigration methods for a nanogap creation as well as their applications for electronic devices (molecular/DNA devices and resistive switches), thermoelectric energy conversion devices, and photonic devices (nanoantennas).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信